• Title/Summary/Keyword: static and dynamic evaluation

Search Result 513, Processing Time 0.03 seconds

Performance Evaluation of Five-DOF Motion under Static and Dynamic Conditions of Ultra-precision Linear Stage (초정밀 직선 스테이지에서 5 자유도 운동의 정적 및 동적 성능 평가)

  • Lee, Jae-Chang;Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • In this study, the five-DOF motion at ultra-precision linear stage under static and dynamic conditions are evaluated through the extending application of ISO 230-2. As the performance factors, the bi-directional accuracy and repeatability of the five-DOF motion are quantitatively evaluated with the measurement uncertainties which are determined using the standard uncertainty of equipment used in experiment. The motion under static condition are analyzed using geometric errors. The five geometric errors except the linear displacement error are measured using optimal measurement system which is designed to enhance the standard uncertainty of geometric errors. In addition, the motion under dynamic conditions are analyzed with respect to the conditions with different feed rate of the stage. The experimental results shows that the feed rate of stage has a significant effect on straightness motions.

Fatigue Strength Evaluation of the Aluminum Car body of Urban Transit Unit by Large Scale Dynamic Load Test (도시철도차량 알루미늄 차체의 동적 하중 시험에 의한 피로 강도 평가)

  • Seo, Sung-Il;Park, Choon-Soo;Shin, Byung-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1051-1055
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Structural integrity assessment for the carbody by static load test has been performed up to date. In this study, to evaluate fatigue strength of the aluminum carbody of urban transit unit. a testing method to simulate dynamic loading condition was proposed and the fatigue strength of the carbody was evaluated. The dynamic load test results showed that the alternating stress ranges were different from the estimated ranges based on the static test results. Excessive stress ranges at the center are thought to come from the flexible motion of the carbody. published fatigue test data for aluminum components, but variation of alternating acceleration along the length due to flexibility of carbody yielded unexpected results. Because fatigue strength based on the static test results may be overestimated at the center, modification of testing method is necessary.

  • PDF

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Dynamic Performance of Pedestrian Guardrail System based on 3-D Soil Material Model according to Post Shapes (지주 형상에 따른 3차원 지반재료 모델의 경기장 보행자용 가드레일 동적성능 평가)

  • Yang, Seung-Ho;Lee, Dong-Woo;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.

Seismic Performance Evaluation of a School Gymnasium Using Static Anlysis (정적해석에 의한 학교 체육관의 내진 성능 평가)

  • Morooka, Shigehiro;Tsuda, Seita;Ohsaki, Makoto
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.49-59
    • /
    • 2009
  • The seismic responses of small-scale spatial frames such as school gymnasiums are usually evaluated using static analysis, although time-history analysis should be carried out to fully incorporate the dynamic responses of the structures against seismic motions. In this study, advanced static analysis procedures arc presented for school gymnasiums that will improve the performance evaluation against seismic motions. The seismic loads are approximated by equivalent static loads corresponding to the two performance levels; i.e., Levels 1 and 2 defined by the Japanese building standard. The importance of utilizing the eigenmode in the load pattern is discussed. Simple static analysis procedures are presented for evaluation of maximum vertical acceleration. It is shown that the static analysis for Level 2 input significantly underestimates the responses by dynamic analysis; however, the inelastic responses for Level 2 are shown to be successfully evaluated using the equivalent linearization that is similar to the $^{\circ}$Dmethod based on calculation of limit strength$^{\circ}{\pm}$ for building frames in Japan.

  • PDF

Dynamic Model Development and Simulation of Crawler Type Excavator (크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션)

  • Kwon, Soon-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF

Dynamic Modeling of Green Building Certification Criteria Using System Dynamics (시스템 다이내믹스를 활용한 친환경건축물 인증기준의 동태모형 개발에 관한 연구)

  • Choi, Woo Ram;Lee, Hyo Won
    • KIEAE Journal
    • /
    • v.9 no.5
    • /
    • pp.53-61
    • /
    • 2009
  • Green Building Certification System currently going into effect is a static evaluation model. Therefore, as far as the sustainable development of certification system is concerned, further long-term evaluation is required. The main purpose of this study is to offer a model in a way of developing and verifying a dynamic model in Green Building Certification. A dynamic model development has been given System Dynamics based on the causal structure. Thus, this study focused on searching the causal structure of certification criteria and verifying the reality of the model through simulation processing after developing a model. In conclusion, the development of dynamic evaluation method can be attributed to systematic evaluation for the criteria of Certification System.

Evaluation of Structural Safety for Hydrogen Tube Trailer Considering Dynamic Property (동적 특성을 고려한 수소 튜브 트레일러의 구조 안전성 평가)

  • Y. B. Kim;M. G. Kim;D. C. Ko
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2024
  • Recently, hydrogen energy has been widely used because of strict regulations on greenhouse gas emissions. For using the hydrogen energy, it is required to supply hydrogen through a tube trailer. However hydrogen tube trailer can have excessive load problems during transportation due to reasons such as road shape and driving method, which may lead a risk of hydrogen leakage. So it is necessary to secure a high level of safety. The purpose of this study is to evaluate structural safety for the conservative design of hydrogen tube trailer. First, finite element(FE) modeling of the designed hydrogen tube trailer was performed. After that, safety evaluation method was established through static structural simulation based on the standard GC207 conditions. In addition, effectiveness of the designed model was confirmed through the results of the structural safety evaluation. Finally, driving simulation was used to derive acceleration graph according to time, which was considered as a dynamic property for the evaluation of conservative tube trailer safety evaluation. And dynamic structural simulation was conducted as a condition for actual transportation of tube trailer by applying dynamic properties. As a results, conservative safety was evaluated through dynamic structural simulation and the safety of hydrogen tube trailer was confirmed through satisfaction of the safety rate.

A Quantitative Assissment of Static ann Dynamic Postural Sway in Normal Adults (정상성인에 대한 정적 및 동적 자세균형제어의 정량적 분석)

  • Shin, Y.I.;Kim, Y.H.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 1997
  • Postural balancing in human is known to be maintained by the complex mechanism coupled with cerebellum, equilibrium organ of ear, proprioception and other various organs. We developed a Computerized Balance Evaluation and Training system(COBET system) to evaluate postural control and to rehabilitate geriatrics and disabled patient. In addition, 55 normal adult were tested to investigate the influencing factors on balancing posture. For the analysis of static postural sway, areas of the moving center of pressure were calculated under 8 different positions of subjects. And subjects were also asked to follow the visual targets on monitor for the evaluation of the dynamic postural sway. In comparison of the first and the second sets of tests, there was test-retest reliability($\textit{p}$< 0.05). The controllability of the static pmtwn sway was decreased as the ages of subjects increase. When the ages of subject are over 60, the controllability was significantly decrease4 The dynamic postural sway was significantly greater in the age groups of 7th and 8th decade than the younger groups. It is concluded that COBET system is a reliable system in the evaluation of postural sway. The COBET system is considered to be a valuable training modality for the disabled patients as well as the elderly.

  • PDF