• Title/Summary/Keyword: static and dynamic analyses

Search Result 406, Processing Time 0.025 seconds

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Multi-objective optimization of anisogride composite lattice plate for free vibration, mass, buckling load, and post-buckling

  • F. Rashidi;A. Farrokhabadi;M. Karamooz Mahdiabadi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.89-107
    • /
    • 2024
  • This article focuses on the static and dynamic analysis and optimization of an anisogrid lattice plate subjected to axial compressive load with simply supported boundary conditions. The lattice plate includes diagonal and transverse ribs and is modeled as an orthotropic plate with effective stiffness properties. The study employs the first-order shear deformation theory and the Ritz method with a Legendre approximation function. In the realm of optimization, the Non-dominated Sorting Genetic Algorithm-II is utilized as an evolutionary multi-objective algorithm to optimize. The research findings are validated through finite element analysis. Notably, this study addresses the less-explored areas of optimizing the geometric parameters of the plate by maximizing the buckling load and natural frequency while minimizing mass. Furthermore, this study attempts to fill the gap related to the analysis of the post-buckling behavior of lattice plates, which has been conspicuously overlooked in previous research. This has been accomplished by conducting nonlinear analyses and scrutinizing post-buckling diagrams of this type of lattice structure. The efficacy of the continuous methods for analyzing the natural frequency, buckling, and post-buckling of these lattice plates demonstrates that while a degree of accuracy is compromised, it provides a significant amount of computational efficiency.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Analysis of Nonlinear Seismic Behavior of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details (특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 비선형 내진거동 해석)

  • Yoon, Sung-Joon;Lee, Kihak;Chun, Young-Soo;Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • In this paper, analytical models for reinforced concrete shear wall systems designed based on Korean Building Code (KBC2009) are proposed, which have special and semi-special seismic details and are compared with experimental results for a verification of analytical models. In addition, semi-special seismic details aimed to improve constructability and enhance economic efficiency were proposed and evaluated. The analytical models were performed based on nonlinear static and dynamic analysis. Through the nonlinear analyses, two seismic details showed the similar seismic behavior from the cyclic test and the analytical models for the two different seismic details represented the behavior in terms of the initial stiffness, maximum strength and strength degradation. And newly proposed seismic details(semi-special) provided with similar hysterestic behavior as well as the maximum drift.

The MIN-N family of pure-displacement, triangular, Mindlin plate elements

  • Liu, Y. Jane;Riggs, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.297-320
    • /
    • 2005
  • In recent years the pure displacement formulation for plate elements has not been as popular as other formulations. We revisit the pure displacement formulation for shear-deformable plate elements and propose a family of N-node, displacement-compatible, fully-integrated, pure-displacement, triangular, Mindlin plate elements, MIN-N. The development has been motivated by the relative simplicity of the pure displacement formulation and by the success of the existing 3-node plate element, MIN3. The formulation of MIN3 is generalized to obtain the MIN-N family, which possesses complete, fully compatible kinematic fields, in which the interpolation functions for transverse displacement are one degree higher than those for rotations. General element-level formulas for the thin-limit Kirchhoff constraints are developed. The 6-node, 18 degree-of-freedom element MIN6, with cubic displacement and quadratic rotations, is implemented and tested extensively. Numerical results show that MIN6 exhibits good performance for both static and dynamic analyses in the linear, elastic regime. The results illustrate that the fully-integrated MIN6 element has excellent performance in the thin limit, even for coarse meshes, and that it does not require shear relaxation.

Generation of Parametric Human Body Segment Models Using Korean Anthropometric Data (한국인의 인체측정 데이터를 이용한 파라메트릭 인체분절모델 생성)

  • Koo, Bon-Yeol;Choi, Myeong-Hwan;Chae, Je-Wook;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.424-436
    • /
    • 2011
  • In this paper, we propose a methodology of generating a parametric segment model for human body using the Korean anthropometric data. The model is defined as an articulated body model consisted with 19 ellipsoid primitives. The primitives are joined at locations representing the physical joints of human body. A lot of previous researches have suggested methodologies of generating body models using the European or American anthropometric data, so that these models were inappropriate for engineering analyses and simulations in case of the Koreans. We defined a set of 35 body dimensions representing our segment model based on the anthropometric data of Koreans. Also we defined four key parameters of age, height, weight and waist circumference, and then we applied regression equations to associate the parameters to the aforementioned dimensions. As the results, we obtained the parametric human body segment models according to the various body types and the subject-specific models for a specific individual. The models in the various industries can be used as the base models for static and dynamic analysis considering the Koreans.

Robust Active LED Driver with High Power Factor and Low Total Harmonic Distortion Compatible with a Rapid-Start Ballast

  • Park, Chang-Byung;Choi, Bo-Hwan;Cheon, Jun-Pil;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.226-236
    • /
    • 2014
  • A new active LED driver with high power factor (PF) and low total harmonic distortion (THD) compatible with a rapid-start ballast is proposed. An LC input filter is attached to the ballast to increase PF and reduce THD. A boost converter is then installed to regulate the LED current, where an unstable operating region has been newly identified. The unstable region is successfully stabilized by feedback control with two zeroes. The extremely high overall system of the 10th order is completely analyzed by the newly introduced phasor transformed circuits in static and dynamic analyses. Although a small DC capacitor is utilized, the flicker percentage of the LED is drastically mitigated to 1% by the fast controller. The proposed LED driver that employs a simple controller with a start-up circuit is verified by extensive experiments whose results are in good agreement with the design.

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.

The effect of mass eccentricity on the torsional response of building structures

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.671-682
    • /
    • 2018
  • The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo

  • Choo, Yeon Woong;Jeong, Juhee;Jung, Keehoon
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.357-366
    • /
    • 2020
  • Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the realt-ime IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.