DOI QR코드

DOI QR Code

Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo

  • Choo, Yeon Woong (Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine) ;
  • Jeong, Juhee (Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine) ;
  • Jung, Keehoon (Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine)
  • Received : 2020.03.15
  • Published : 2020.07.31

Abstract

Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the realt-ime IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.

Keywords

References

  1. Jung K, Heishi T, Khan OF et al (2017) Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J Clin Invest 127, 3039-3051 https://doi.org/10.1172/JCI93182
  2. Jung K, Kim P, Leuschner F et al (2013) Endoscopic timelapse imaging of immune cells in infarcted mouse hearts. Circ Res 112, 891-899 https://doi.org/10.1161/CIRCRESAHA.111.300484
  3. Choi M, Kwok SJ and Yun SH (2015) In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology (Bethesda) 30, 40-49 https://doi.org/10.1152/physiol.00019.2014
  4. Jung K, Heishi T, Incio J et al (2017) Targeting CXCR4-dependent immunosuppressive Ly6C(low) monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci U S A 114, 10455-10460 https://doi.org/10.1073/pnas.1710754114
  5. Weigert R, Sramkova M, Parente L, Amornphimoltham P and Masedunskas A (2010) Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133, 481-491 https://doi.org/10.1007/s00418-010-0692-z
  6. Leblond F, Davis SC, Valdes PA and Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B 98, 77-94 https://doi.org/10.1016/j.jphotobiol.2009.11.007
  7. Condeelis J and Weissleder R (2010) In vivo imaging in cancer. Cold Spring Harb Perspect Biol 2, a003848 https://doi.org/10.1101/cshperspect.a003848
  8. Cahalan MD and Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26, 585-626 https://doi.org/10.1146/annurev.immunol.24.021605.090620
  9. Sanderson MJ, Smith I, Parker I and Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014, pdb top071795
  10. Greenberg ML, Weinger JG, Matheu MP et al (2014) Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proc Natl Acad Sci U S A 111, E2349-2355 https://doi.org/10.1073/pnas.1406658111
  11. Entenberg D, Wyckoff J, Gligorijevic B et al (2011) Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protoc 6, 1500-1520 https://doi.org/10.1038/nprot.2011.376
  12. Hierro-Bujalance C, Bacskai BJ and Garcia-Alloza M (2018) In vivo imaging of microglia with multiphoton microscopy. Front Aging Neurosci 10, 218 https://doi.org/10.3389/fnagi.2018.00218
  13. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205, 194-205 https://doi.org/10.1002/path.1697
  14. Andresen V, Pollok K, Rinnenthal JL et al (2012) Highresolution intravital microscopy. PLoS One 7, e50915 https://doi.org/10.1371/journal.pone.0050915
  15. Ivashchenko O, van der Have F, Villena JL et al (2015) Quarter-millimeter-resolution molecular mouse imaging with U-SPECT(+). Mol Imaging 14, 7290.2014.00053
  16. Gabriel EM, Fisher DT, Evans S, Takabe K and Skitzki JJ (2018) Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 9, 20165-20178 https://doi.org/10.18632/oncotarget.24957
  17. Lu FM and Yuan Z (2015) PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg 5, 433-447 https://doi.org/10.3978/j.issn.2223-4292.2015.03.16
  18. Wang W, Wyckoff JB, Frohlich VC et al (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62, 6278
  19. Norman K (2005) Techniques: intravital microscopy--a method for investigating disseminated intravascular coagulation? Trends Pharmacol Sci 26, 327-332 https://doi.org/10.1016/j.tips.2005.04.002
  20. Gavins FNE and Chatterjee BE (2004) Intravital microscopy for the study of mouse microcirculation in antiinflammatory drug research: focus on the mesentery and cremaster preparations. J Pharmacol Toxicol Methods 49, 1-14 https://doi.org/10.1016/S1056-8719(03)00057-1
  21. Pantazis P, Maloney J, Wu D and Fraser SE (2010) Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc Natl Acad Sci U S A 107, 14535-14540 https://doi.org/10.1073/pnas.1004748107
  22. Fukumura D, Duda DG, Munn LL and Jain RK (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206-225 https://doi.org/10.1111/j.1549-8719.2010.00029.x
  23. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N and Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 93, 14765-14770 https://doi.org/10.1073/pnas.93.25.14765
  24. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF and Jain RK (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54, 4564-4568
  25. Honkura N, Richards M, Lavina B, Sainz-Jaspeado M, Betsholtz C and Claesson-Welsh L (2018) Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat Commun 9, 2746 https://doi.org/10.1038/s41467-018-04929-8
  26. Jain RK, Munn LL and Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2, 266-276 https://doi.org/10.1038/nrc778
  27. Meijer EFJ, Blatter C, Chen IX et al (2017) Lymph node effective vascular permeability and chemotherapy uptake. Microcirculation 24, e12381 https://doi.org/10.1111/micc.12381
  28. Kirkpatrick ND, Chung E, Cook DC et al (2012) Video-rate resonant scanning multiphoton microscopy: an emerging technique for intravital imaging of the tumor microenvironment. IntraVital 1, 60-68 https://doi.org/10.4161/intv.21557
  29. Askoxylakis V, Badeaux M, Roberge S et al (2017) A cerebellar window for intravital imaging of normal and disease states in mice. Nat Protoc 12, 2251-2262 https://doi.org/10.1038/nprot.2017.101
  30. Meijer EFJ, Jeong HS, Pereira ER et al (2017) Murine chronic lymph node window for longitudinal intravital lymph node imaging. Nat Protoc 12, 1513-1520 https://doi.org/10.1038/nprot.2017.045
  31. Ellenbroek SI and van Rheenen J (2014) Imaging hallmarks of cancer in living mice. Nat Rev Cancer 14, 406-418 https://doi.org/10.1038/nrc3742
  32. Alieva M, Ritsma L, Giedt RJ, Weissleder R and van Rheenen J (2014) Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital 3, e29917 https://doi.org/10.4161/intv.29917
  33. Entenberg D, Voiculescu S, Guo P et al (2018) A permanent window for the murine lung enables highresolution imaging of cancer metastasis. Nat Methods 15, 73-80 https://doi.org/10.1038/nmeth.4511
  34. Entenberg D, Rodriguez-Tirado C, Kato Y, Kitamura T, Pollard JW and Condeelis J (2015) In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. IntraVital 4, 1-11 https://doi.org/10.1080/21659087.2015.1086613
  35. Kim JK, Lee WM, Kim P et al (2012) Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals. Nat Protoc 7, 1456-1469 https://doi.org/10.1038/nprot.2012.078
  36. Matheu MP, Cahalan MD and Parker I (2014) Intravital Imaging of the Immune System; in Advances in Intravital Microscopy: From Basic to Clinical Research, Weigert R (ed.), 81-103, Springer Netherlands, Dordrecht
  37. Nitschke C, Garin A, Kosco-Vilbois M and Gunzer M (2008) 3D and 4D imaging of immune cells in vitro and in vivo. Histochem Cell Biol 130, 1053-1062 https://doi.org/10.1007/s00418-008-0520-x
  38. Mempel TR, Henrickson SE and von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154-159 https://doi.org/10.1038/nature02238
  39. Miller MJ, Safrina O, Parker I and Cahalan MD (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200, 847-856 https://doi.org/10.1084/jem.20041236
  40. Miller MJ, Wei SH, Parker I and Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869-1873 https://doi.org/10.1126/science.1070051
  41. Germain RN, Robey EA and Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336, 1676-1681 https://doi.org/10.1126/science.1221063
  42. Hyun YM, Choe YH, Park SA and Kim M (2019) LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp Mol Med 51, 1-13
  43. Nunes-Silva A, Bernardes PT, Rezende BM et al (2014) Treadmill exercise induces neutrophil recruitment into muscle tissue in a reactive oxygen species-dependent manner. An intravital microscopy study. PLoS One 9, e96464 https://doi.org/10.1371/journal.pone.0096464
  44. Rapp M, Wintergerst MWM, Kunz WG et al (2019) CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 216, 1170-1181 https://doi.org/10.1084/jem.20170277
  45. Chojnacki A, Wojcik K, Petri B et al (2019) Intravital imaging allows real-time characterization of tissue resident eosinophils. Commun Biol 2, 181 https://doi.org/10.1038/s42003-019-0425-3
  46. Usmani SM, Murooka TT, Deruaz M et al (2019) HIV-1 balances the fitness costs and benefits of disrupting the host cell actin cytoskeleton early after mucosal transmission. Cell Host Microbe 25, 73-86. e5 https://doi.org/10.1016/j.chom.2018.12.008
  47. Filipe-Santos O, Pescher P, Breart B et al (2009) A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6, 23-33 https://doi.org/10.1016/j.chom.2009.04.014
  48. Grandjean CL, Montalvao F, Celli S et al (2016) Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies. Sci Rep 6, 34382 https://doi.org/10.1038/srep34382
  49. Marques PE, Oliveira AG, Chang L, Paula-Neto HA and Menezes GB (2015) Understanding liver immunology using intravital microscopy. J Hepatol 63, 733-742 https://doi.org/10.1016/j.jhep.2015.05.027
  50. Turcotte R, Alt C, Runnels JM et al (2017) Image-guided transplantation of single cells in the bone marrow of live animals. Sci Rep 7, 3875 https://doi.org/10.1038/s41598-017-02896-6
  51. Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92-96 https://doi.org/10.1038/nature07434
  52. Khorshed RA, Hawkins ED, Duarte D et al (2015) Automated identification and localization of hematopoietic stem cells in 3d intravital microscopy data. Stem Cell Rep 5, 139-153 https://doi.org/10.1016/j.stemcr.2015.05.017
  53. Batsivari A, Haltalli MLR, Passaro D, Pospori C, Lo Celso C and Bonnet D (2020) Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 22, 7-17 https://doi.org/10.1038/s41556-019-0444-9
  54. Fujisaki J, Wu J, Carlson AL et al (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216-219 https://doi.org/10.1038/nature10160
  55. Scheele CL, Hannezo E, Muraro MJ et al (2017) Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542, 313-317 https://doi.org/10.1038/nature21046
  56. Pinner S, Jordan P, Sharrock K et al (2009) Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res 69, 7969-7977 https://doi.org/10.1158/0008-5472.CAN-09-0781
  57. Chaffer C and Weinberg R (2011) A perspective on cancer cell metastasis. Science 331, 1559-1564 https://doi.org/10.1126/science.1203543
  58. Kuo CW, Chueh DY and Chen P (2019) Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots. J Nanobiotechnology 17, 26 https://doi.org/10.1186/s12951-019-0453-7
  59. Ritsma L, Steller EJA, Beerling E et al (2012) Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci Transl Med 4, 158ra145 https://doi.org/10.1126/scitranslmed.3004394
  60. Lee SH, Park SA, Zou Y et al (2018) Real-time monitoring of cancer cells in live mouse bone marrow. Front Immunol 9, 1681 https://doi.org/10.3389/fimmu.2018.01681
  61. Ng LG, Mrass P, Kinjyo I, Reiner SL and Weninger W (2008) Two-photon imaging of effector T-cell behavior: lessons from a tumor model. Immunol Rev 221, 147-162 https://doi.org/10.1111/j.1600-065X.2008.00596.x
  62. Breart B, Lemaitre F, Celli S and Bousso P (2008) Twophoton imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118, 1390-1397 https://doi.org/10.1172/JCI34388
  63. Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67, 2649-2656 https://doi.org/10.1158/0008-5472.CAN-06-1823
  64. Arlauckas SP, Garris CS, Kohler RH et al (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 9, eaal3604 https://doi.org/10.1126/scitranslmed.aal3604
  65. Barretto RP and Schnitzer MJ (2012) In vivo optical microendoscopy for imaging cells lying deep within live tissue. Cold Spring Harb Protoc 2012, 1029-1034 https://doi.org/10.1101/pdb.top071464
  66. Paulson B, Kim IH, Namgoong JM et al (2019) Longitudinal micro-endoscopic monitoring of high-success intramucosal xenografts for mouse models of colorectal cancer. Int J Med Sci 16, 1453-1460 https://doi.org/10.7150/ijms.35666
  67. Choi JW, Kim JK, Choi M, Kim YR and Yun SH (2014) In vivo imaging of Lgr5-positive cell populations using confocal laser endomicroscopy during early colon tumorigenesis. Endoscopy 46, 1110-1116 https://doi.org/10.1055/s-0034-1377631
  68. Kim A, Yu HY, Lim J et al (2017) Improved efficacy and in vivo cellular properties of human embryonic stem cell derivative in a preclinical model of bladder pain syndrome. Sci Rep 7, 8872 https://doi.org/10.1038/s41598-017-09330-x
  69. Kim JK, Choi JW and Yun SH (2013) 350-mum side-view optical probe for imaging the murine brain in vivo from the cortex to the hypothalamus. J Biomed Opt 18, 50502 https://doi.org/10.1117/1.JBO.18.5.050502
  70. Barretto RP and Schnitzer MJ (2012) In vivo microendoscopy of the hippocampus. Cold Spring Harb Protoc 2012, 1092-1099 https://doi.org/10.1101/pdb.prot071472
  71. Barretto RP, Ko TH, Jung JC et al (2011) Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17, 223-228 https://doi.org/10.1038/nm.2292
  72. Kim JK, Vinarsky V, Wain J et al (2012) In vivo imaging of tracheal epithelial cells in mice during airway regeneration. Am J Respir Cell Mol Biol 47, 864-868 https://doi.org/10.1165/rcmb.2012-0164OC
  73. Wallace MB, Meining A, Canto MI et al (2010) The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther 31, 548-552 https://doi.org/10.1111/j.1365-2036.2009.04207.x
  74. Xie XJ, Li CQ, Zuo XL et al (2011) Differentiation of colonic polyps by confocal laser endomicroscopy. Endoscopy 43, 87-93 https://doi.org/10.1055/s-0030-1255919
  75. Kiesslich R, Gossner L, Goetz M et al (2006) In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol 4, 979-987 https://doi.org/10.1016/j.cgh.2006.05.010
  76. Wu K, Liu JJ, Adams W et al (2011) Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 78, 225-231 https://doi.org/10.1016/j.urology.2011.02.057
  77. Fisher DT, Muhitch JB, Kim M et al (2016) Intraoperative intravital microscopy permits the study of human tumour vessels. Nat Commun 7, 10684 https://doi.org/10.1038/ncomms10684
  78. Padera TP, Stoll BR, So PTC and Jain RK (2002) Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging 1, 9-13 https://doi.org/10.1162/153535002753395662
  79. Kim P, Puoris'haag M, Cote D, Lin CP and Yun SH (2008) In vivo confocal and multiphoton microendoscopy. J Biomed Opt 13, 010501 https://doi.org/10.1117/1.2839043
  80. Benninger RKP and Piston DW (2013) Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol Chapter 4, Unit 4.11.1-24
  81. Veilleux I, Spencer JA, Biss DP, Cote D and Lin CP (2008) In vivo cell tracking with video rate multimodality laser scanning microscopy. IEEE J Sel Top Quantum Electron 14, 10-18 https://doi.org/10.1109/JSTQE.2007.912751
  82. Sanderson MJ (2004) Acquisition of multiple real-time images for laser scanning microscopy. Microsc Anal 18, 17-23
  83. Kim P, Chung E, Yamashita H et al (2010) In vivo wide-area cellular imaging by side-view endomicroscopy. Nat Methods 7, 303-305 https://doi.org/10.1038/nmeth.1440
  84. van de Ven A, Kim P, Ferrari M and Yun S (2013) Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice. Protoc Exch 2013, 10.1038/protex.2013.049
  85. Kirui DK and Ferrari M (2015) Intravital microscopy imaging approaches for image-guided drug delivery systems. Curr Drug Targets 16, 528-541 https://doi.org/10.2174/1389450116666150330114030
  86. Jeong J, Suh Y and Jung K (2019) Context Drives Diversification of Monocytes and Neutrophils in Orchestrating the Tumor Microenvironment. Front Immunol 10, 1817 https://doi.org/10.3389/fimmu.2019.01817