• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.027 seconds

Fuzzy Control of Underwater Robotic Vehicles (무인 잠수정의 퍼지제어)

  • Lee, W.;Kang, G.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

Modeling and Optimal Control with Piezoceramic Actuators for Transverse Vibration Reduction of Beam under a Traveling Mass (이동질량에 의한 보의 횡진동저감을 위한 모델링 및 압전작동기를 이용한 최적제어)

  • Sung, Yoon-Gyeoung;Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.126-132
    • /
    • 1999
  • The paper presents the modeling and optimal control for the reduction of transverse vibration of simply supported beam under a moving mass. The equations of motion are derived by using assumed mode method. The coriolis and centripetal accelerations are accommodated in the equations of motion to account for the dynamic effect of the traveling mass. In order to reduce the transverse vibration of the beam, an optimal controller with full state feedback is designed based on the linearized equations of motion. The optimal actuator locations are determined with the evaluation of an optimal cost functional defined by the worst initial condition with the trade-off of controlled mode performance. Numerical simulations are performed with respect to various velocities and different traveling masses. Even if the velocity of the traveling mass reaches to the critical speed which can cause the resonance of the beam, the controller with two piezoelectric actuators shows the excellent performance under severe time-varying disturbances of the system.

  • PDF

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

CPS: Operating System Architecture for Efficient Network Resource Management with Control-Theoretic Packet Scheduler

  • Jung, Hyung-Soo;Han, Hyuck;Yeom, Heon-Young;Kang, Soo-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.266-274
    • /
    • 2010
  • The efficient network resource management is one of the important topics in a real-time system. In this paper, we present a practical network resource management framework, control-theoretic packet scheduler (CPS) system. Using our framework, an operating system can schedule both input and output streams accurately and efficiently. Our framework adopts very portable feedback control theory for efficiency and accuracy. The CPS system is able to operate independent of the internal network protocol state, and it is designed to schedule packet streams in fine-grained time intervals to meet the resource requirement. This approach simplifies the design of the CPS system, and leads us to obtain the intended output bandwidth. We implemented our prototype system in Linux, and measured the performance of the network resource management system under various network QoS constraints. The distinctive features of our principles are as follows: It is robust and accurate, and its operation is independent of internal network protocols.

Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems (TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

An improved Loop Shaping Approach of QFT using Genetic Algorithm and a Design of Steam Generator Water Level Control System in Nuclear Power Station (유전 알고리듬을 이용한 개선된 QFT의 루프 형성법 및 원전 증기발생기 수위제어계의 설계)

  • 김주식;김민환;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.106-113
    • /
    • 1998
  • The steam generator waste level control system in a nuclear power station has difficulty in its mathematical modeling and theoretical application in both a transient and steady state operation. Therefore, the stability problem of the conventional control methods brings many researches interests to the various methods of a system design in recent years. In this study, an improved loop shaping approach is proposed by applying the genetic algorithm to QFT (Quantitative Feedback Theory) in designing a control system in order to the performance of the system. And the effects of the proposed methods are shown by the simulation results.

  • PDF

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Synchronous Control of an Asymmetrical Dual Redundant EHA (비대칭 이중화 EHA의 동기 제어)

  • Lee, Seong Ryeol;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, an elementary force fighting problem was investigated. The problem is encountered when a double-rod type EHA(electro-hydrostatic actuator) is combined with a single-rod type EHA to build a redundant actuator system with synchronized motion. When the rod-side chambers of the two different types of EHAs have the same effective piston areas and are simultaneously pressurized by an external load, the two EHAs behave identically, sharing the external load equally. However, when the piston head-side chamber of the single rod type EHA, having a larger effective area than the rod-side chamber, is pressurized by the external load, an abnormal force fighting between the two EHAs occurs, unless their pump speeds are properly decoupled. In this study, the output drive forces of each EHA were obtained from the cylinder pressure signals and applied to the position control for each EHA to maintain the balance between their pump speeds. Adding minor force difference feedback loops to the position control, the force fighting phenomena could be eliminated and steady state synchronization errors were reduced. The power consumption of the pumps also could be remarkably reduced, avoiding unnecessarily high load pressures to the pumps.

Posture Stabilization Control of Biped Transformer Robot under Disturbances (이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어)

  • Geun-Tae Kim;Myung-Hun Yeo;Jung-Yup Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.