• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.027 seconds

Robust Control of Robot Manipulators using Vision Systems

  • Lee, Young-Chan;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.162-170
    • /
    • 2003
  • In this paper, we propose a robust controller for trajectory control of n-link robot manipulators using feature based on visual feedback. In order to reduce tracking error of the robot manipulator due to parametric uncertainties, integral action is included in the dynamic control part of the inner control loop. The desired trajectory for tracking is generated from feature extraction by the camera mounted on the end effector. The stability of the robust state feedback control system is shown by the Lyapunov method. Simulation and experimental results on a 5-link robot manipulator with two degree of freedom show that the proposed method has good tracking performance.

  • PDF

Control of Semi-active Suspensions for Passenger Cars(I) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2179-2186
    • /
    • 1997
  • In this paper, the performance of a semi-active suspension system for a passenger car has been investigated. Alternative semi-active suspensions control laws has been compared via simulations. The control laws investigated in this study are : sprung mass velocity feedback control law, sky-hook damping control law, and state feedback control law. Simulation results show that a semi-active suspension has potential to improve ride quality of automobiles.

Output Feedback Fuzzy H(sup)$\infty$ Control of Nonlinear Systems with Time-Varying Delayed State

  • Lee, Kap-Rai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2000
  • This paper presents and output feedback fuzzy H(sup)$\infty$ control problem for a class of nonlinear systems with time-varying delayed state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of fuzzy H(sup)$\infty$ controllers are given in terms of matrix inequalities. Constructive algorithm for design of fuzzy H(sup)$\infty$ controller is also developed. A simulation example is given to illustrate the performance of the proposed design method.

  • PDF

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.

Fast Compensator of Periodic Disturbance in Disk Drives (디스크 드라이브의 주기적 외란 고속 보상 제어)

  • 부찬혁;김호찬;강창익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.153-163
    • /
    • 2004
  • The control objective in hard disk drives is to move head as fast as possible to target track and position the head over the center of target track in the presence of external disturbances. The external shock or disk clamping error in manufacturing process causes the disk center to deviate from the disk rotation center. The disk shift acts on the control system as disturbance and degrades severely the performance of disk drives. In this paper, we present a new controller that compensates for the periodic disturbances very fast. The disturbance compensator is arranged in parallel with the state feedback controller. To avoid the interference with the state feedback controller, the compensator creates compensation signal without the feedback of system output until steady state. The pulse type controller is included additionally for improving the transient performance due to initial state. Finally, in order to demonstrate the superior performance of the proposed compensator. we present some experimental results using a commercially available disk drive.

Asynchronous State Feedback Control for SEU Mitigation of TMR Memory (비동기 상태 피드백 제어를 이용한 TMR 메모리 SEU 극복)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1440-1446
    • /
    • 2008
  • In this paper, a novel TMR (Triple Modular Redundancy) memory structure is proposed using state feedback control of asynchronous sequential machines. The main ability of the proposed structure is to correct the fault of SEU (Single Event Upset) asynchronously without resorting to the global synchronous clock. A state-feedback controller is combined with the TMR realized as a closed-loop asynchronous machine and corrective behavior is operated whenever an unauthorized state transition is observed so as to recover the failed state of the asynchronous machine to the original one. As a case study, an asynchronous machine modelling of TMR and the detailed procedure of controller construction are presented. A simulation results using VHDL shows the validity of the proposed scheme.

A Chaos Control Method by DFC Using State Prediction

  • Miyazaki, Michio;Lee, Sang-Gu;Lee, Seong-Hoon;Akizuki, Kageo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The Delayed Feedback Control method (DFC) proposed by Pyragas applies an input based on the difference between the current state of the system, which is generating chaos orbits, and the $\tau$-time delayed state, and stabilizes the chaos orbit into a target. In DFC, the information about a position in the state space is unnecessary if the period of the unstable periodic orbit to stabilize is known. There exists the fault that DFC cannot stabilize the unstable periodic orbit when a linearlized system around the periodic point has an odd number property. There is the chaos control method using the prediction of the $\tau$-time future state (PDFC) proposed by Ushio et al. as the method to compensate this fault. Then, we propose a method such as improving the fault of the DFC. Namely, we combine DFC and PDFC with parameter W, which indicates the balance of both methods, not to lose each advantage. Therefore, we stabilize the state into the $\tau$ periodic orbit, and ask for the ranges of Wand gain K using Jury' method, and determine the quasi-optimum pair of (W, K) using a genetic algorithm. Finally, we apply the proposed method to a discrete-time chaotic system, and show the efficiency through some examples of numerical experiments.

The Performance Verification of Optimal State Feedback Controllers via The Inverted Pendulum (도립진자 시스템을 통한 최적 상태 되먹임 제어기의 성능 검증)

  • Lee, Jong-Yeon;Lee, Bo-Ra;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2010
  • This paper presents the performance verification of the optimal state feedback controller via inverted pendulum systems. The proposed method generates the optimal control inputs satisfying both the constrained input and the performance specification. In addition, it reduces the steady-state error by adopting the integral control technique. In order to verify the performance of the proposed method, we apply both the proposed method and the general state feedback control to an inverted pendulum, CEM-IP-01 in the experiment.

Web Tension Control Using Output Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.213-218
    • /
    • 2007
  • We consider a web transport system. The objective of this paper is to design the output feedback controller such that the controller can track a desired tension and processing speed on web transport system. We propose the new design method using observer and feedback linearization technique. The proposed method use a nonlinear feedback to transform to linear system and high gain observer to estimate the state value. We show that the proposed controller can achieve the control object using only output. We show a performance of controller via the simulation.

  • PDF

Anti-Sway Control of Container Cranes;Inclinometer, Observers, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1365-1370
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and its maintenance is easy. However, it gives almost the same performance. Various observers for estimating the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of the rail-mounted quayside crane is constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the pilot crane constructed. Experimental results are provided.

  • PDF