• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.028 seconds

Extended Feedback Control based on Impulse Response for Lane Change of Autonomous Driving Vehicle (자율 주행 차량의 차선 변경을 위한 충격 응답 기반 상태 확장 되먹임 제어)

  • Sangyoon Kim;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • This paper presents extended state feedback control based on impulse response for lane change of autonomous driving vehicle. The triple characteristic root of path tracking system and longitudinal velocity determine feedback gains. We suggest a resemblance of impulse response curve of the system and lane change trajectory of the vehicle. The root affects the duration of lane change and lateral acceleration. The effect of limited lateral acceleration and saturation of steering angle will be analyzed and discussed. Finally, simulation results will show the trajectory of lane change based on impulse response under limitation of lateral acceleration.

Design of a Controller for Nonlinear Electrohydraulic Position Control Systems (비선형 전기유압 위치제어시스템용 제어기 설계)

  • 서원모;진강규;하주식;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 1991
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control systems is designed and implemented. The method is based on augmenting the system with both compensated integrator and additional integrator, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then readjusting the feedback gains using the describing function method to eliminate the limit cycle in the steady-state. The proposed control law is implemented using OP amplifiers and electronic components, and step and ramp response tests are carried out in the electrohydraulic servomechanism EHS-160. The results show the improvement in both transient and steady-state responses.

  • PDF

Design of Dead Time Compensator with Robustness (강인한 특서을 갖는 지연시간 보상기의 설계)

  • 박귀태;이기상;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.199-208
    • /
    • 1992
  • MIESF(Modified Integral Error and State Feedback) controller suggested in order to control the processes with time delay is the control scheme that combines Smith predictor and IESF(Integral Error and State Feedback). This control scheme has better performance than the conventional PID controller incorporating Smith predictor with respect to the robustness and control performance for the modelling error. MIESF controller can be simply designed by pole assignment algorithm. BUT in such a case, it is difficult to find proper poles which gurantee robustness with respect to process parameter uncertainties. In order to solve the aforementioned difficulties, we suggest a new design method for MIESF controller and show the validity of the proposed design method.

Robust non-fragile $H_{\infty}$ control of singular systems

  • Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2112-2115
    • /
    • 2005
  • This paper considers the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, through singular value decomposition, some changes of variables, and Schur complements, the sufficient condition can be rewritten as LMI form in terms of transformed variables. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Finally, a numerical example is given to illustrate the design method.

  • PDF

A STUDY OF ROBUST CONTROLLER FOR ROBOT MANIPULATOR (로보트 매니플레이터의 제어를 위한 강인한 적응 제어기의 설계)

  • Park, Kyoung-Hee;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.450-455
    • /
    • 1989
  • In this paper we investigate the application to the motion control of n-link robotic manipulators of recently developed stable factorization approach to tracking and disturbance rejection. Given control scheme consists of an approximate "Computed Torque" based upon a simplified model together with additional state feedback and feedforward compensation, and then, nonlinear control gain has more useful than constant control gain to guarantee robustness to parameter uncertainty and external disturbance. At this stage, we design high gain nonlinear state feedback controller and simulate this controller at the SCARA type robot manipulator of two joint.

  • PDF

A Derivation of the Equilibrium Point for a Controller of a Wheeled Inverted Pendulum with Changing Its Center of Gravity (무게중심이 변동되는 차륜형 역진자의 평형점 상태에 관한 연구)

  • Lee, Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.496-501
    • /
    • 2012
  • An equilibrium point of a WIP (Wheeled Inverted Pendulum) with changing its center of gravity is derived and validated by various numerical simulations. Generally, the WIP has two equilibrium points which are unstable and stable one. The unstable one is interested in this study. To keep the WIP over the unstable equilibrium point, the WIP is consistently being adjusted. A state feedback controller for the WIP needs a control reference for the equilibrium point. The control reference can be obtained by studying an equilibrium point of the WIP based on statics. By using Lagrange method, this study is deriving dynamic equations of the WIP both with and without changing its center of gravity. Various numerical simulations are carried out to show the validation of the equilibrium point.

$H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 이용한 2관성계의 $H_{\infty}$제어)

  • Kim, Jin-Soo;Lee, Hoon-Goo;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.53-57
    • /
    • 2001
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two degrees of freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, $H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

Robust Adaptive Control of Nonlinear Output Feedback Systems under Disturbance with Unknown Bounds

  • Y. H. Hwang;H. W. Yang;Kim, D. H.;Kim, D. W.;Kim, E. S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.2-37
    • /
    • 2001
  • This paper addresses the robust adaptive output feedback tracking for nonlinear systems under disturbances whose bounds are unknown. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The State estimation is solved using K-filters, together with the construction of a bound of an error in the state estimation due to the perturbation of the disturbance. Tuning functions are used to estimate unknown system parameters without overparametrization. The proposed control algorithm ensures that the out put tracking error converges to a residual set which can be arbitrarily small, while maintaining the boundedness of all other variables. A simulation shows the effectiveness of the proposed approach

  • PDF

Position Control of an Electro-hydraulic Servo System with Disturbance (외란을 갖는 전기유압 서보시스템의 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In a hydraulic control system, since a hydraulic cylinder drives a relatively large mass of an object, an external load force acts as a disturbance on the control performance of the system. Additionally, as the hydraulic system is used for a long period, there are disturbances that occur gradually, such as a drop in supply pressure because of abrasion of the pump, oil leakage from a valve, and oil leakage from a cylinder. In this study, a state feedback controller based on a linearization technique is applied. To prevent the performance degradation of the controller from the load disturbance, an Extended Luenberger observer (ELO) is used for the Extended system. The case of using the proportional controller, which is a representative linear controller, and the result of using the controller designed in this study are compared and reviewed through simulation. Also, we propose an experimental gain-setting method for a state feedback controller that can be used at industrial sites, and examine how the stability and control performance of the system changes because of the disturbance inputs through the experimental results.

Hybrid State Space Self-Tuning Fuzzy Controller with Dual-Rate Sampling

  • Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae;L. S. Shieh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.244-249
    • /
    • 1998
  • In this paper, the hybrid state space self-tuning control technique Is studied within the framework of fuzzy systems and dual-rate sampling control theory. We show that fuzzy modeling techniques can be used to formulate chaotic dynamical systems. Then, we develop the hybrid state space self-tuning fuzzy control techniques with dual-rate sampling for digital control of chaotic systems. An equivalent fast-rate discrete-time state-space model of the continuous-time system is constructed by using fuzzy inference systems. To obtain the continuous-time optimal state feedback gains, the constructed discrete-time fuzzy system is converted into a continuous-time system. The developed optimal continuous-time control law is then convened into an equivalent slow-rate digital control law using the proposed digital redesign method. The proposed technique enables us to systematically and effective]y carry out framework for modeling and control of chaotic systems. The proposed method has been successfully applied for controlling the chaotic trajectories of Chua's circuit.

  • PDF