• Title/Summary/Keyword: state-feedback control

Search Result 1,065, Processing Time 0.03 seconds

ADAPTIVE OPTIMAL OUTPUT FEEDBACK CONTROL

  • Sin, Hyeong-Cheol;Byeon, Jeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1981.07a
    • /
    • pp.146-153
    • /
    • 1981
  • A practical and robust control scheme is suggested for MIMO discrete time processes with real simple poles. This type of control scheme, having the advantages of both the adaptiveness and optimality, may be successfully applicable to structured dynamic controllers for plants whose parameters are slowly time-varying. The identification of the process parameters is under-taken in ARMA form and the optimization of the feedback gain matrix is performed in the state space representation with regard to a standard quadratic criterion.

  • PDF

The Implementation of State Observer for Position Control of Electrohydraulic Servo Systema (유압서보 시스템의 위치제어를 위한 관측제어기의 실현화 연구)

  • 이동권;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.673-677
    • /
    • 1986
  • This paper deals with the state observer-controller which observes unmeasurable state variables of the system and then uses the estimated values as feedback signals. The linearized model is deduced from the nonlinear electrohydraulic servo system. The 4th order analog linear observer-controller and the 2nd order digital one are modelled and implemented using OP amplifiers and IBM PC/XT, respectively. The two observer are experimentally used in the control of an electrohydraulic system. The results are satisfactory in estimation performance and in tracking performance to command signal.

  • PDF

On The Dynamics And The Demagnetization Effect Of The Amplidyne Generator With Auxiliary Feedback Compensating Winding (상태변수에 의한 회전형전자증폭기의 동특성 해석 및 감자작용효과에 관한 연구)

  • Se Hoon Chang
    • 전기의세계
    • /
    • v.21 no.6
    • /
    • pp.9-16
    • /
    • 1972
  • This work intends to study the machine dynamics in the state-space approah and to formulate the operating characteristics of a namplidyne generator, with balanced control field winding and an auxiliary feedback winding for compensating purpose. In the derivation of the dynamic equation, investigations on the demagnetization effects are accentuated, based on the magnetic interlinks between windings of the machine. From the machine dynamic relation obtained, a state-variable representation of the machine dynamics is approached in the first part of this work.

  • PDF

Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method (상태 공간 기법을 이용한 원심압축기 공기 유량 모델 기반 적응 제어)

  • Han, Jaeyoung;Jung, Mooncheong;Yu, Sangseok;Yi, Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.535-542
    • /
    • 2016
  • In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

Robust Finite-time Dissipative State Feedback Controller Design for Discrete-time Uncertain Singular Systems (이산시간 불확실 특이시스템의 유한시간 강인 산일성 상태궤환 제어기 설계)

  • Kim, Jong Hae;Oh, Do Chang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1598-1604
    • /
    • 2015
  • In this paper, we treat the problem of a robust finite-time dissipative state feedback controller design method for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for finite-time stability of discrete-time singular systems is derived. A finite-time dissipative state feedback controller design method satisfying finite-time stability and dissipativity is proposed by LMI(linear matrix inequality) technique on the basis of the obtained BRL. Moreover it is shown that the obtained condition can be extended into polytopic uncertain systems by proper manipulations. Finally, illustrative examples are given to show the applicability of the proposed method.

Image-Based Robust Output Feedback Control of Robot Manipulators using High-Gain Observer (고이득 관측기를 이용한 영상기반 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Jeon, Yeong-Beom;Jang, Ki-Dong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.731-737
    • /
    • 2013
  • In this paper, we propose an image-based output feedback robust controller of robot manipulators which have bounded parametric uncertainty. The proposed controller contains an integral action and high-gain observer in order to improve steady state error of joint position and performance deterioration due to measurement errors of joint velocity. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulations on a 5-link robot manipulators with two degrees of freedom.

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

Optimal controller design for active suspension system with asymmetric hydraulic cylinder using feedback linearization (비대칭형 유압실린더를 사용한 능동현가 시스템에서의 Feedback Linearization을 이용한 최적 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.644-647
    • /
    • 1997
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF