• Title/Summary/Keyword: state matrix

Search Result 1,549, Processing Time 0.024 seconds

A State Observer of Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.613-616
    • /
    • 2012
  • This paper proposes the state observer design for nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

CLASSIFICATION OF TREES EACH OF WHOSE ASSOCIATED ACYCLIC MATRICES WITH DISTINCT DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES

  • Kim, In-Jae;Shader, Bryan L.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.95-99
    • /
    • 2008
  • It is known that each eigenvalue of a real symmetric, irreducible, tridiagonal matrix has multiplicity 1. The graph of such a matrix is a path. In this paper, we extend the result by classifying those trees for which each of the associated acyclic matrices has distinct eigenvalues whenever the diagonal entries are distinct.

ALGORITHMS FOR SOLVING MATRIX POLYNOMIAL EQUATIONS OF SPECIAL FORM

  • Dulov, E.V.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.41-60
    • /
    • 2000
  • In this paper we consider a series of algorithms for calculating radicals of matrix polynomial equations. A particular aspect of this problem arise in author's work. concerning parameter identification of linear dynamic stochastic system. Special attention is given of searching the solution of an equation in a neighbourhood of some initial approximation. The offered approaches and algorithms allow us to receive fast and quite exact solution. We give some recommendations for application of given algorithms.

LMI-based Design of Integral Sliding Mode Controllers for Polytopic Models (폴리토픽 모델을 갖는 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.44-48
    • /
    • 2010
  • This paper presents an LMI-based method to design an integral sliding mode controller for an uncertain system with a polytopic model. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law.

Weighted Carlson Mean of Positive Definite Matrices

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.479-495
    • /
    • 2013
  • Taking the weighted geometric mean [11] on the cone of positive definite matrix, we propose an iterative mean algorithm involving weighted arithmetic and geometric means of $n$-positive definite matrices which is a weighted version of Carlson mean presented by Lee and Lim [13]. We show that each sequence of the weigthed Carlson iterative mean algorithm has a common limit and the common limit of satisfies weighted multidimensional versions of all properties like permutation symmetry, concavity, monotonicity, homogeneity, congruence invariancy, duality, mean inequalities.

A Balanced Model Reduction for Fuzzy Systems with Time Varying Delay

  • Yoo, Seog-Hwan;Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • This paper deals with a balanced model reduction for T-S(Takagi-Sugeno) fuzzy systems with time varying state delay. We define a generalized controllability gramian and a generalized observability gramian for a stable T-S fuzzy delayed systems. We obtain a balanced state space realization using the generalized controllability and observability gramian and obtain a reduced model by truncating states from the balanced state space realization. We also present an upper bound of the approximation error. The generalized controllability gramian and observability gramian can be computed from solutions of linear matrix inequalities. We demonstrate the efficacy of the suggested method by illustrating a numerical example.

A Precise Position Control of Mobile Robot with Two Wheels (2휠 구동 모바일 로봇의 정밀 위치제어)

  • Jung, Yang-Guen;Baek, Seung-Hak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.67-74
    • /
    • 2015
  • Two-wheeled driying mobild robots are precise controlled in terms of linear contol methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and heavy influence the overall driving performance. This study describes the nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the optimal control outperforms in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly conrtibutes to the driving performance and stability.

Optimal Selection of Master States for Order Reduction (동적시스템의 차수 줄임을 위한 주상태의 최적선택)

  • 오동호;박영진
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • We propose a systematic method to select the master states, which are retained in the reduced model after the order reduction process. The proposed method is based on the fact that the range space of right eigenvector matrix is spanned by orthogonal base vectors, and tries to keep the orthogonality of the submatrix of the base vector matrix as much as possible during the reduction process. To quentify the skewness of that submatrix, we define "Absolute Singularity Factor(ASF)" based on its singular values. While the degree of observability is concerned with estimation error of state vector and up to n'th order derivatives, ASF is related only to the minimum state estimation error. We can use ASF to evaluate the estimation performance of specific partial measurements compared with the best case in which all the state variables are identified based on the full measurements. A heuristic procedure to find suboptimal master states with reduced computational burden is also proposed. proposed.

  • PDF

Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.