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A Balanced Model Reduction for Fuzzy Systems with Time Varying Delay
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Abstract

This paper deals with a balanced model reduction for T-S(Takagi-Sugeno) fuzzy systems with time varying state delay. We
define a generalized controllability gramian and a generalized observability gramian for a stable T-S fuzzy delayed systems. We
obtain a balanced state space realization using the generalized controllability and observability gramian and obtain a reduced
model by truncating states from the balanced state space realization. We also present an upper bound of the approximation error.
The generalized controllability gramian and observability gramian can be computed from solutions of linear matrix inequalities.
We demonstrate the efficacy of the suggested method by illustrating a numerical example.

Key Words : T-S fuzzy system, generalized controlability/observability gramian, balanced realization, linear matrix inequality.

I. Introduction

For linear finite dimensional systems with high orders,
optimal control techniques such as linear quadratic gaussian
and H,, control theory, usually produce controllers with the

same state dimension as the model. Lower dimensional linear
controllers are normally preferred over higher dimensional
controllers in control system designs for some obvious reasons
: they are easier to understand, implement and have higher
reliability. Accordingly the problem of model reduction is of
significant practical importance in control system design and
has been a focus of a wide variety of studies for recent
decades(see [1-6] and the references therein).

The stability analysis and control of linear time delayed
systems are problems of practical and theoretical interest since
many types of processes such as steel making process and
chemical process can be modeled as dynamic systems with
time delay. In the last decade, the linear matrix
inequality(LMI) based controller design method for delayed
systems has been developed remarkably[7-9]. A drawback of
the LMI based controller synthesis is that computational
requirements increase rapidly as the state dimension increases.
Therefore the state dimension must be kept as low as possible.

In recent years, a controller design method for nonlinear
dynamic systems modeled as a T-S(Takagi-Sugeno) fuzzy
model has been intensively addressed[10-15]. Unlike a single
conventional model, this T-S fuzzy model usually consists of
several linear models to describe the global behavior of the
nonlinear system. Typically the T-S fuzzy model is described
by fuzzy IF-THEN rules. Based on this fuzzy model, many
researchers use one of control design methods developed for
linear parameter varying system. In order to alleviate
computational burden in design phase and simplify the
designed fuzzy controller, the state dimension of the T-S
fuzzy model should be low.

In this paper, using a fuzzy approach we develope a
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balanced model reduction scheme for T-S fuzzy systems with
time varying delay. In section II, we define the T-S fuzzy
system with time varying delay. A generalized controllability
gramian and a generalized observability gramian are defined
and a balanced realization of T-S fuzzy system using the
generalized controllability and observability gramian is also
presented in section III. A model approximation bound is
derived and a suboptimal procedure is described to get a less
conservative error bound in section IV. Section V
demonstrates a numerical example and finally some
concluding remarks are given in section VI

The notation in this paper is fairly standard. R” denotes
»n dimensional real vector space and R **™ is the set of real
nxm matrices. A 7 denotes the transpose of a real matrix
A. (0 and [ denote zero matrix and identity matrix
respectively. M>() means that M is a positive definite matrix.
In a block symmetric matrix, * in (Z,;7) block means the
transpose of (7,7) block. Finally | - | . denotes the H_,

norm of the system.

II. T-S Fuzzy System

We consider the following fuzzy dynamic system with time
varying delay d(?).

Plant Rule 7 (i=1,--,#) :
IF p () is M, and -~ and o () is M.
THEN

W)= A x(+ A ,x(t—d) + B ;1D M
= Ca()+C ,x(t—dD)+ D ;u(?)

where # is the number of fuzzy rules. p (# and M,
(j=1,--,g) are the premise variables and the fuzzy set
respectively. ()R ™ is the state vector, w()eR™ is the

input, WfH)<R? is the output variable and A, A,, B

i
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C, C,4, D, are real matrices with compatible dimensions.
Define A, ,=F.G, C,=H,G F . R"™,
GeR*"" H,R". Note that F, G, H,; are not
necessarily full rank matrices. The easiest choice might be

where

F,=A,; G=I, H,;=C, We also assume that time
varying delay d(f) satisfies
0<d(H<oo, | dH| =m<]. (2

Let u(o()), i=1,--,7 be the normalized membership
function of the inferred fuzzy set % (o(9),

h (e(9)

¢ (D) =— 3
zZlhi(p(t))
where
hLo(D)=TI 5-.M (o (D),
e(D=0p,() p,() = 0 O] " 4)

In this paper, we assume for all #>0,

B o(D)20 (i=1,2,,7), ;’]h,-(p(t)»o. )

Then, we obtain

#LoD20 =127, Dule=1.  ©
For simplicity, by defining

wi=p o), G=1,-,9, pwl=0lp, u,l O

the fuzzy system (1) can be written as follows :

x(8) = AQWx(t) + F(w(# + Bl u(d
= 21 (A )+ F w()+ B D)

(D= Clwx(d+ Hww(d+ D(p)u(H (8)
= ;/z LC x(H+H w()+ D 2(B)

2D= Gx(p

w(= NNz()=z(t—d(P)

where @&(f is a delay operator.
In a packed matrix notation, we express the fuzzy system
(8) as follows :

A(w) | F(u) | B(w)
G= __G__% 0 !0

C(u)

Hp) | D) . ©

III. Generalized Controllability and
Observability Gramians

In order to define controllability and observability gramians,
we present following lemma 1 and 2.

Lemma 1 : Suppose that there exist symmetric positive
definite matrices @ and R such that following LMI holds for

2

each /=1,

ATQ+QA +GTRG * *
L= F1Q -(1-mPk *|<0. 10
C,‘ H,‘ '_I

When «(H=(0 for all #>( in the system (9), the output
energy is bounded above as follows:

Sy T@x@ar
0 Q0+ [ 0 TReldde

(1D

(proof) We define a Lyapunov function candidate V(x(#) as
follows :

V(D) =50 "D+ [ #(0 TReDdr  (12)
t—d(f)
Since LMI (10) holds,
T =[ AW+ QAW + C (1)C(1) + G 'RG
° F() "Q+ H(p) "C(u) (13)

*
H(p) TH(p) — (1~ m)R] <0

holds for all . satisfying (6). Moreover the fuzzy system (9)
is quadratically stable. Accordingly 1Lm V(x(D,H=0. The

output energy becomes
| Om y (ox(Ddr
= fow y (D)0 + Mfﬁl dr+ V(x(0))

= [7 2 MO T e+ Vx(0))
<V((0))

(14)

where (D= [ x(1) ] .

Gx(t—d(¥))

Lemma 2 : Suppose that there exist symmetric positive
matrix P and S such that following LMI (15) holds for each
=1, 7

AP+PAT * * ok

- SFT  —(1-mS * =
Ly i o g vl as

BY 0 0 —1I

Then the input energy required to transit the state from
x(—00)=0 to x(0) is bounded below as follows :

0
f_m u "(Du(v)dr
>x(0) TP+ [ A0 S Dde

(16)

(proof) We define a Lyapunov function candidate V(x(#)) as
follows :

V(x(D)=x(H) TP (D + ftt_d(t) 20D TS "(ndr. (A7)

As in the proof of lemma 1,
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PA() T+ A()P+ PGTSTIGP * *
L= SF(u)T —(1-mS *|<0 (18)
B(w* 0 -1

holds for all x satisfying (6).

From the Lyapunov function candidate V(x(£)), we obtain
0 = fio () "20) — u(D) Tu(D)dr

= [ ) "0~ o) Tt + - LAy

— W(x(0),0)
0 0
< [ _u® Tu@dr— Vi + [ 80 L (e
S’ u) e~ Va0))

19)

P lx(d

S ~1Gx(t—d( t))]. This completes the proof.
u(d

As in [6], we say @ and P, solutions of LMI's (10) and
(15), as the generalized observability gramian and
controllability gramian respectively. While the observability
and controllability gramian in linear time invariant systems are
unique, the generalized gramians of the fuzzy delayed system
(9) are not unique. But the generalized gramians are related to
the input and output energy as can be seen in lemma 1 and
lemma 2.

Using the generalized gramians, we suggest a balanced
realization of the fuzzy system (9). We obtain a
transformation matrix 7 and U satisfying

where (9=

T 'PT "=T7QT=3=diag(0,,0,,,0,),
0,20,2 20,
U SUT=UTRU=II= diag(z |, 7wy, , )

(20

With 7 and U defined in (20), the change of coordinates
in the fuzzy system (9) gives

A, () | Fo(u) | B, (0)
G=| Gy __ O 1 _0_
Co(u) | H,(u) | D, (1)
TA@T |TFuU | T™'B(p)
=| U'er 0 L0
CuT [ HwU | D)
, Abi | Fbl :Bb,i
S MG | 0 1 0
= Cbi Hbl E-Db,i

=iyi U'GT|{ 0 | 0 ,
‘ D, (21)

One can easily observe that the state space realization of
(21) satisfy following LMI's (22) and (23).

A () TZHZA )+ C (1) TC (1)

L= F (1) TZ‘+II;ébb(/1) C () (22)
* *
Hy() TH ()~ (1 —ml * ]<0
0 _
A I+ ZA (1) THB (1B ) T
Ly= HFGI,EZﬂ) ! 23)
* *
—(1-mII * |<0
0 —

From this reason, we say that the realization (21) is a
balanced realization of the fuzzy system (9) and X is a
balanced gramian.

IV. Balanced Model Reduction

In this section, we develop a balanced model reduction
scheme using the balanced gramian defined in section III. we
also derive an upper bound of model approximation error
resulting from the balanced model reduction. We assume that
the fuzzy system (9) is already balanced and partitioned as
follows :

A A | E(w) 1 Bi(w)
G| A | FEW | B\
.G G | 0} o
Cw G [Hw | D
"41',1] A,IZ Fx".l : Bi.]
R Ay Ax | F, 1B,
_l=1 ' Gl GZ 0 i 0
C, C.|H D (24)

where A ;()eR """ 9 A (u)eR”™ and the other
matrices are compatibly partitioned. From (24) we obtain a
reduced order model by truncating #» states as follows :

A | FW | B
G.=| G { 0 ! 0

r |

C ()

In order to derive an upper bound of model approximation
error, we need the bounded real lemma for fuzzy systems with
time varying delay.

Lemma 3 : Suppose that there exist symmetric positive
definite matrices X and R satisfying LMI (26) for all 4
satisfying (6).

XA(pw) T+ A(w)X * * * %
RFE(u) T —(1—-m)R * * ok
B T 0 —I * % (<0 (26)
y 'ClwXx y 'HWR v "D ) —1 =*
GX 0 0 0 —R



International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 1, June 2004

Then the fuzzy delayed system (9) satisfies || Gl <7

(proof) One can easily prove lemma 3 using the method of-

[7]. Hence we omit the detailed proof.

Theorem 4 : The reduced order system (25) is quadratically
stable and balanced. The model approximation error is given
by

1G-G,1 .52 _3 o, @D
(proof) We partition the balanced gramian % as
S=diag(X,,5,) where IR0 g.eRp™

Then the reduced order system G, satisfies LMI's (28) and
(29).

A 11(/‘) T21 +3,A 11(#) +C 1(#) c 1(#)
FIZ +Hw C ()

TG, (28)
* *
H(p) TH) —(1—m)I  * ]<0
0 J—
A 11(#)21 +3,A 11(#) ’+B 1(#)B 1(/1) T
or (w’
G5, 29
* *
—(1—mII * ](0
0 —

Hence the reduced order system G, is quadratically stable
and balanced. Without loss of generality we assume that
r=1. Thus, ¥,=o¢, A state space realization of the error

system G ,=G—G, can be written by

AW 0 0 | Fw 0 |BGw]
0 AW AW| 0 F@W!B®@
G 2|0 AU AuGn| O F,(u) i B, (1)
‘ G, 0 0 0 0, 0
0 G, G, 0 0 i 0

=G Cw Cw [“H@ H@w| 0 (30)

1 1 '
%I 21 0

_|L =1

T=|51 510 (31)
0 0 I

With 7 defined in (31), the change of coordinate in the
error system G, gives (32).

(AW 0 AW2|FV2 EW2! B
0 AW AW EW2 w2 0
1 i
AB W BD |y A am | 0 Ew B
q Ci 0'0 |
ALY Nl G G 0|0 o010
QUH O]l g G g o 00
o T Gw |Hb | o | @Y

In order to prove | G,| <20, we will show that there

exist symmetric positive definite matrices
satisfying following LMI (33).

XE and HZ

Lll
L: = GZZHe(.u)He(ﬂ) TGCe(#)Xe‘l—HeFe(ﬂ) T (33)

e
*

. %
6,4 H () TH (I ,—(1—-m)IT, * [<0
0 —_

e

where

Ly=A ()X +X A () "+0,2X .C ) TC (X,
+B(WB ("

Using Schur complement in LMI (26), LMI (33) can be
derived. Lets choose X, and IT, as,

2 0 0

0 23! OJ
0 0 20

g =|m+em! 17—02,,17‘1]
¢ \m-Amt n+&mt

X, =

. (34)

Then LMI (33) can be expressed as follows :

MT 0 0
0 M%¥ o
0 0 M}
NT 0 0
0 NT 0
0 0 NT

L= ch 0 M2 0

0 0 M,

M, 0 0}
(35)

+ L,

N, O 0
0N20}<0
0 0 N,

where

w,=[100

L _[0 6,55 0
00 1r Me=My=L1 1, N, [ 1 —1]’

0 0
Ny=Ny=[0, 17" —o,17]
Since X, and [7, defined in (34) satisfy LMI (33), we
| G, w=20, This completes the proof.

In theorem 4, we have proved that the model reduction

can conclude

error is bounded above by 2 2:1 O In order to get a less

model reduction error bound, it is necessary for
O p—pi1»'» 0, to be small. Hence we choose a cost function

a3 J=trac PQ)= Zn:laz,-. Thus, we minimize the

non-convex cost function subject to the convex constraints
(10) and (15). Since this optimization problem is non-convex,
the optimization problem is very difficult to solve it. So we
suggest a suboptimal procedure using an iterative method. We
summarize an iterative method to solve a suboptimal problem.

step 1 : Set {=0. Initialize @, R, P; and S; such
that J= trace( P;+ @) is minimized subject to LMI's (10)
and (15).

step 2 : Set {=i+1.

1) Minimize J,=trace(P;Q ;_,) subject to LMI (15).

2) Minimize [J;=trace(P ;Q ;) subject to LMI (10).

step 3 : I |J,—J,_ |
level, stop iteration. Otherwise, go to step 2.

is less than a small tolerance
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V. A Numerical Example

We consider a T-S fuzzy system with time varying delay
given by

Plant Rule 1 :
Wo cpLe Ay TP @
Plant Rule 2 :
2(H) = Ax(D+A gx(t—dB)+Byult) an

W= Cx(+ C px(t—d(P)

where
0 1 0 0 0 1 0 0
1o 0o 1 o Lo o 1 0
A=l o0 0 114 o 0o o 1|
4 =17 —17 -7 6 —17 —17 —17
BI=B5=[0001],C,=C,=[100 0l,
0000 00 00
oo oo _loo oo
Aa=l0 90 0" 2o 0 0 of
00.100.1 00.10.10

We choose F\=A,, Fy=A gy Hi=H,=C,, G=1I
for convenience. Using the iterative method described in
section IV, we obtain

8.97 —0.431 —-2.71 0.341
p=10-3"0431 2.8 —0.181 —6.56
—2.71 —0.181 6.98 —0.963}"
0.341 —6.56 —0.963 102.0 (38)
3.27 2.90 1.11 0.1%4
Q=29 3.12 1.27 0.180
1.11 1.27 0.538 0.0765

0.154 0.180 0.0765 0.0115

Using (20) we also obtain the balanced gramian
2= diag(0.1718, 0.0467, 0.0092, 0.0051). Accordingly we
can expect the model reduction error is bounded by 0.0286
when we truncate last 2 state variables. Using (25) the
reduced system can be obtained as follows :

Plant Rule 1 :
WD = A, D+ F | G x(t—dD)+ B, (D)
_ 701381 0.3879 |,p
_888(7)2 0. 865???32 0.2142
+[010005 0.0063 "(t_d(t))+[012525] )

(39)
W= C, x(D+H,G x(t—d()
= [0.1934 —0.2272) (2
+[0.0193 —0.0227]x(¢t—d(2)

Plant Rule 2 :

()= A, (2(D+F, G ux(t—dD)+ B,y uld
_ [—0.2209 0,182 1.y
_83889 0. 8(5;7184 0.2142
[010009 020102]’5“_"(’)”[0:2525 )

(40-1)

W)= C, x(D+H,G x(t—dD)
= [0.1934 —0.2272] (8
+00.0193 —0.0227] x(¢—d()

(40-2)

When d(f) =1, the model reduction error is depicted in
Fig.1. In Fig.1, the solid line represents the model reduction
error of the plant rule 1 and the dotted line represents that of
the plant rule 2.

0.012

001}

H-infinity nom
o o
: &

§

0.002}

o . .
10° 10° 10 10° 10' 10 10
Frequency(rad/sec)

Fig.1 H, norm of model reduction error

VL. Concluding Remark

In this paper, we have studied a balanced model reduction
problem for T-S fuzzy systems with time varying delay. For
this purpose, we have defined generalized controllability/
observability gramians for the fuzzy system with delay. This
generalized gramians can be obtained from solutions of LMI
problem. Using the generalized gramians, we have derived a
balanced state space realization. We have obtained the reduced
model of the fuzzy system by truncating some state variables
and also suggested an upper bound of model reduction error.
In order to get a less conservative reduction error bound, we
presented an iterative sub-optimization procedure for
non-convex optimization. Finally, a numerical example is
presented to demonstrate the efficacy of our method.
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