• Title/Summary/Keyword: state coupling

Search Result 545, Processing Time 0.027 seconds

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites

  • Kim, Minjae;Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.34-40
    • /
    • 2015
  • In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.

Microprocessor-Based Vector Control System for Induction Motor Servo- Drive (유도전동기 서보운전을 위한 마이크로프로세서-벡터 제어 시스템)

  • 김광헌;김영렬;원충연;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1218-1229
    • /
    • 1991
  • The time optimal position control design can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible in the industrial drives. In this case, an induction machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance changes critically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual ones of the induction motor drive, and this situation leads to coupling of the vector controller from the plant, i.e. the induction motor . Consequences of such a coupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque for the induction motor servo drive. Therefore, this paper describes a rotor resistance parameter compensating method for the induction motor, And the validity of the proposed design method is confirmed by simulation studies and experiment results.

  • PDF

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory

  • Ezzat, Magdy A.;Al-Muhiameed, Zeid I.A.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.535-546
    • /
    • 2022
  • The memory response of nonlocal systematical formulation size-dependent coupling of viscoelastic deformation and thermal fields for piezoelectric materials with dual-phase lag heat conduction law is constructed. The method of the matrix exponential, which constitutes the basis of the state-space approach of modern control theory, is applied to the non-dimensional equations. The resulting formulation together with the Laplace transform technique is applied to solve a problem of a semi-infinite piezoelectric rod subjected to a continuous heat flux with constant time rates. The inversion of the Laplace transforms is carried out using a numerical approach. Some comparisons of the impacts of nonlocal parameters and time-delay constants for various forms of kernel functions on thermal spreads and thermo-viscoelastic response are illustrated graphically.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.

Study on Multi-Dimensional Simulation of the Flow and Filtration Characteristics in Diesel Particulate Filters (DPF의 배기가스 유동 및 포집에 관한 다차원 모델링 연구)

  • Kim, Dong-Kyun;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.60-68
    • /
    • 2010
  • In order to understand the flow and filtration characteristics in a wall-flow type DPF(Diesel Particulate Filter), 0-D, 1-D, and 3-D simulations are preformed. In this paper, three model are explained and validated with each other. Based on the comparisons with 1-D and 3-D results for the steady state solution, 3-D CFD analysis is preferable to 1-D for the prediction of wall velocity at the inlet and exit plane. Because PM loading process is transient state phenomena, the combination of full 3-D and time dependent simulation is crucial for the configuration of wall channels. New coupling technique, which is the connection between calculated permeability from 0-D lumped parameter model and UDF(User Defined Functions) of main solver, is proposed for the realisti

Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System (구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용)

  • Lee, Cang-Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_20_5 (YBaCo_20_5 화합물에서의 구조변형에 의한 전하, 궤도, 스핀상태 전이 연구)

  • Se Kyun Kwon;Jin Ho Park;Byung II Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.461-461
    • /
    • 2000
  • We have investigated electronic structuresof antiferromagnetic YBaCo_2O_5 using the local spin-density approximation (LSDA) + U method. The charge and orbital ordered insulating ground state is correctly obtained with the strong on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the high spin (HS) and intermediate spin (IS) state, respectively. The tetragonal to orthorhombic structural transition is responsible for the ordering phenomena and the spin states of Co ions. The large contribution of the orbital moment to the total magnetic moment indicates that the effect of the spin-orbit coupling is very important in YBaCo_2O_5.

  • PDF

Reliability assessment of EPB tunnel-related settlement

  • Goh, Anthony T.C.;Hefney, A.M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-69
    • /
    • 2010
  • A major consideration in the design of tunnels in urban areas is the prediction of the ground movements and surface settlements associated with the tunneling operations. Excessive ground movements can damage adjacent building and utilities. In this paper, a neural network model is used to predict the maximum surface settlement, based on instrumented results from three separate EPB tunneling projects in Singapore. This paper demonstrates that by coupling the trained neural network model to a spreadsheet optimization technique, the reliability assessment of the settlement serviceability limit state can be carried out using the first-order reliability method. With this method, it is possible to carry out sensitivity studies to examine the effect of the level of uncertainty of each parameter uncertainty on the probability that the serviceability limit state has been exceeded.