• Title/Summary/Keyword: state coupling

Search Result 545, Processing Time 0.034 seconds

Interpretation of HRV by the Coupled-Oscillating Cardiac Control System (가상 심장박동 발진기를 활용한 심박변이도 해석)

  • Jeung, Gyeo-Wun;Kim, Jeong-Hwan;Lee, Jun-Woo;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.493-498
    • /
    • 2016
  • Heart Rate Variability (HRV) represents beat-to-beat fluctuations of R-R intervals in Electrocardiogram (ECG). On of the clinical applications of HRV is to assess the mental-stress state by evaluating its power spectral density distribution. This study aims at finding new discriminative role of the coupled-oscillating coupling constants, Cs and Cp in the Integral Pulse Frequency Modulation (IPFM) model. Based on comparing with power spectral density of HRV in terms of the relative ratio of the low and high-frequency power component, we can conclude the fact that the coupling parameters Cs and Cp can replace the role of HRV power spectrum interpretation for judging the mental-stress state.

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

Adaptive Decoupling for IPM Machine(ICCAS 2005)

  • Cho, Sung-Uk;Park, Seung-Kyu;Ahn, Ho-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1617-1620
    • /
    • 2005
  • The current control for interior permanent magnet machines is more complicate than surface permanent magnet machine because of its torque characteristic depending on the reluctance. For high performance torque control, it requires state decoupling between the d-current and q-current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variations and each current can be regulated independently. This paper presents a novel approach for fully decoupling the states cross-coupling using parameter adaptation. The adaptation method is based on the error between reference currents and the currents with state decoupling which have to follow the references. This method is more object-oriented than the other online parameter estimation methods in IPM machine and other electrical machines

  • PDF

Two-photon excitation in three-level atom (세준위 모델원자에서 2광자 광여기 현상)

  • 김영철;성도현;김기식
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.260-265
    • /
    • 1994
  • In the three-level atom interacting with a single mode radiation field, two-photon excitation between the ground state and the upper most excited state is investigated. Using the resolvant theory, the effective resolvant, containing the ground state and the final excited state, is found and the coupling constant and the detuning being taken as parameters, the excitation mechanism is analyzed. In particular. by introducing an ensemble of effective two-level atoms, a consistent interpretation in terms of inteference phenomena is pursued. rsued.

  • PDF

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.

Evaluate the Effect of the Intake Manifold Geometry on Cylinder-to-cylinder Variation Using 1D-3D Coupling Analysis (1D-3D 연동해석을 통한 흡기 매니폴드 형상이 실린더별 유동 분배에 미치는 영향 평가)

  • Park, Sangjun;Cho, Jungkeun;Song, Soonho;Cho, Jayun;Wang, Taejoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2016
  • CNG engine has been used as a transportation because of higher thermal efficiency and lower CO2 and particulate matter. However its out put power is decreased due to cylinder-to-cylinder variation during the supply of air-fuel mixture to the each cylinder. It also causes noise and vibration. So in this study, 1D engine simulation model was validated by comparison with experiment data and 3D CFD simulation was conducted to steady-state flow analysis about each manifold geometry. Then, the effects of various intake manifold geometries on variation were evaluated by using 1D-3D coupling analysis at engine speed of 2100 rpm range in 12 L CNG engine. As a result, variation was improved about 4 % though 3D CFD analysis and there was a variation within 3 % using 1D-3D coupling analysis.

Inhibitory Effect of $Mg^{2+}$ on the Release of $Ca^{2+}$ from Ryanodine Receptor of the Sarcoplasmic Reticulum in the Skeletal Muscle (골격근 망상체 $Ca^{2+}$유리 Channel[Raynodine receptor]의 $Mg^{2+}$에 의한 유리 억제)

  • 이철주
    • Journal of Chest Surgery
    • /
    • v.25 no.4
    • /
    • pp.347-355
    • /
    • 1992
  • The precise mechanism of the Excitation-Contraction Coupling is still uncertain. But the concept that Ca2+ induced Ca2+ release [CICR] from the Ryanodine receptor in the sarcoplasmic reticulum [foot structure] may play a major role in E-C coupling has been widely accepted since 1970`s. It is believed that increased cytosolic Ca2+ followed by CICR is main contributor for E-C coupling of striated muscle. Resulting phenomena of ischemic /post-reperfusion myocyte is increased cytosolic Ca2+, even to the absence of Ca2+ in reperfusate. So intracellular inhibitor to CICR might prevent the ischemic and reperfusion damage of myocardial cells. The relatively purified foot protein, especially heavy sarcoplasmic reticulum rich, of the skeletal muscle was incorporated into the black lipid bilayer [Phosphatidyl ethanolamine: Phosphatidyl serine=l: 1]. Under the steady state of membrane potential [+20 mV], ionic current through Ryanodine receptor was measured with Cs+ as charge carrier. In the cis chamber [Cytoplasmic side], Mg2+ strongly inhibited CICR of Ryanodine receptor[Kd=6.2 nM]. In conclusion, naturally existing intracellular free Mg2+ can inhibit CICR from intracellular Ca2+ reservior [heavy SR]. So post-ischemic or post-reperfusing myocardium could be preserved using additional free Mg2+ in cardioplegic solution or reperfusate, otherwise the optimal concentration is undetermined.

  • PDF

2-state 5-pole bandpass filter consisted of dual and tripe-mode cavity resonator (이중 및 삼중모드 공동 공진기로 구성된 2단 5-Pole 대역통과 필터)

  • 김상철;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1251-1258
    • /
    • 1997
  • Generally, it is very important to study selective coupling between cavities of the filter structure using multimode cavity resonator. In this paper, we have manufactured 5-pole bandpass filter(BPF) using dual and triple-mode cavity resonator. To do so, we have derived the formulas for coupling coefficient about coupling between TE-modes from TM/TE-mode's tangential and lognitudinal field intensities each other. To implement the Chebyshev response, the intercabity slot combining dual-mode and triple-mode is designed to couple one H-field of TE-mode parallel to slot plate. In this paper, specially it is derived the formulas for T $E_{11p}$-mode from TE-modes, and determined after obtaining location and size of intercabity slot from the equation. In this ppaer, based on this result, we designed and implmented teh bandpass filter operated at the center frequency of 14.5GHz with a Chebyshev response. For the manufactured cavity filter, dual-mode and triple-mode cavity are resonted by two orthogonal T $E_{113}$-modes, and by two orthogonal T $E_{113}$-modes and one T $M_{012}$-mode, respecitively. The 2-stage 5-pole BPF proposed in this paper has the insertion loss of -2.32dB, the reflection loss of -15dB in the passband, and the out-or-rejection of -67dB.

  • PDF

Coupling relevance vector machine and response surface for geomechanical parameters identification

  • Zhao, Hongbo;Ru, Zhongliang;Li, Shaojun
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1207-1217
    • /
    • 2018
  • Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.