• Title/Summary/Keyword: start current compensation

Search Result 20, Processing Time 0.027 seconds

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

Design of monolithic DC-DC Buck converter with on chip soft-start circuit (온칩 시동회로를 갖는 CMOS DC-DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.568-573
    • /
    • 2009
  • This paper presents a step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in O.13um CMOS standard process. In an effort to decrease system volume, this paper proposes the on chip compensation circuit using capacitor multiplier method. Capacitor multiplier method can minimize error amplifier's compensation capacitor size by 10%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87.2% for the output voltage of 1.2V (input voltage : 3.3V), maximum load current 500mA, and 25mA output ripple current. This voltage mode controled buck converter has 1MHz switching frequency.

A Busbar Current Differential Relay with a Compensating Algorithm (보상 알고리즘을 적용한 모선보호용 전류차동 계전기)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

A Busbar Current Differential Relay with a Compensating Algorithm (보상 알고리즘을 적용한 모선보호용 전류차동 계전기)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

A Percentage Current Differential Relay for Bus Protection Using a Compensation Algorithm Unaffected by a Remanent Flux (잔류자속에 무관한 보상 알고리즘을 적용한 모선보호용 전류차동 계전방식)

  • Kang, Yong-Cheol;Yun, Jae-Sung;Lim, Ui-Jai
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.308-310
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection with a compensation algorithm of a CT. The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the third-difference of the secondary current. It calculates the core flux and compensates distorted currents in accordance with the magnetization curve. The test results indicate that the algorithm can discriminate internal faults from external faults when the CT saturates. It can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

  • PDF

A Characteristic Study on the Power Factor Compensation Application of High Voltage Induction Motor (고압 유도전동기 역률 보상설비의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Reactive power doesn't contribute to work but needs to sustain the electromagnetic field required for the induction motor to operate. Starting power factor of induction motor is specially lower than running power factor. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is occasionally being hit by the effects of the starting reactor connection position at the starting, stopping of high-voltage induction motor. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.

A Compensated Current Acqaisition Device for CT Saturation (왜곡 전류 보상형 전류 취득 장치)

  • Ryu, Ki-Chan;Gang, Soo-Young;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.96-98
    • /
    • 2005
  • In this paper, an algorithm to compensate the distorted signals due to Current Transformer(CT) saturation is suggested, First, DWT which can be easily realized by filter banks in real-time applications is used to detect a start point and an end point of the saturation. Secondly, For enough Datas those need to use the least-square curve fitting method, the distorted current signal is compensated by the AR(autoregressive) model using the data during the previous healthy section until pick point of Saturation. Thirdly, the least-square curve fitting method is used to restore the distorted section of the secondary current. Finaly, this algorithm had a Hadware test using DSP board(TMS320C32) with Doble test device. DWT has superior detection accuracy and the proposed compensation algorithm which shows very stable features under various levels of remanent flux in the CT core is also satisfactory. And this algorithm is more correct than a previous algorithm which is only using the LSQ fitting method. Also it can be used as a MU involving the compensation function that acquires the second data from CT and PT.

  • PDF

A Percentage Current Differential Relaying Algorithm for Bus Protection Using an Advanced Compensating Algorithm of the CTs (개선된 변류기 보상알고리즘을 적용한 모선보호용 비율전류차동 계전방식)

  • 강용철;윤재성;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.158-164
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection using an advanced compensating algorithm of the secondary current of current transformers (CTs). The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the second-difference of the secondary current. Then, it calculates the core flux and compensates distorted currents using the magnetization curve. The algorithm Is unaffected by a remanent flux. The simulation results indicate that the proposed algorithm can discriminate internal faults from external faults when the CT saturates. This paper concludes by implementing the algorithm into a TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory. The proposed algorithm can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

Analysis of Power Condenser Voltage Characteristics by Reactor Starting-operation (리액터 기동 운전시 콘덴서 전압 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Dong-Ju;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.619-620
    • /
    • 2008
  • Reactor starting method has the advantage of simplicity and closed transition in spite of lower starting torque per kVA. This method allows a smooth start with almost no observable disturbance on transition and is suitable for applications such as centrifugal pumps or fans. Starting power factor is specially low. Power factor application is needed to compensate for the lower power factor of induction motor. This power factor compensation systems is being hit by the effects of the starting reactor connection position. This paper describes voltage and current stress affected by the installation position of power factor compensation application at the reactor starting method.

  • PDF

An Advanced Algorithm for Compensating the Secondary Current of CTs (개선된 변류기 2차 전류 보상 알고리즘)

  • 강용철;임의재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.387-392
    • /
    • 2003
  • During a fault the remanent flux in a current transformer (CT) may cause severe saturation of its core. The resulting distortion in the secondary current could cause the mal-operation of a protection relay. This paper proposes an algorithm for compensating for the errors in the secondary current caused by CT saturation and the remanent flux. The algorithm compensates the distorted current irrespective of the level of the remanent flux. The second-difference function of the current is used to detect when the CT first starts to saturate. The negative value of the second-difference function at the start of saturation, which corresponds to the magnetizing current, is inserted into the magnetization curve to obtain the core flux at the instant. This value is then used as an initial flux to calculate the actual flux of the CT during the course of the fault with the secondary current. The magnetizing current is then estimated using the magnetization curve and the calculated flux value. The compensated secondary current can be estimated by adding the magnetizing current to the secondary current. Test results indicate that the algorithm can accurately compensate a severely distorted secondary current signal.