• 제목/요약/키워드: stars: variables: Cepheids

검색결과 5건 처리시간 0.022초

X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

  • Engle, Scott G.;Guinan, Edward F.
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.181-189
    • /
    • 2012
  • To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, ${\delta}$ Cep and ${\beta}$ Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating $10^4$ K up to ${\sim}3{\times}10^5$ K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range ${\varphi}{\approx}0.8-1.0$ and vary by factors as large as $10{\times}$. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log $L_X{\approx}28.5-29.1$ ergs/sec, and plasma temperatures in the $2-8{\times}106$ K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven ${\alpha}^2$ equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 ${\varphi}$) favor the shock heating mechanism hypothesis.

APPLICATION OF CEPHEIDS TO DISTANCE SCALE: EXTENDING TO ULTRA-LONG PERIOD CEPHEIDS

  • NGEOW, CHOW-CHOONG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.371-374
    • /
    • 2015
  • Classical Cepheids (hereafter Cepheids) belong to a class of important variable stars that can be used to determine distances to nearby galaxies via the famous period-luminosity (PL) relations, i.e. the Leavitt Law. In turn, these distances can then be used to calibrate a host of secondary distance indicators located well within the Hubble flow, and ultimately determine the Hubble constant in a manner independent of the Cosmic Microwave Background (CMB) measurements. Some recent progress in determining the Hubble constant to within ~ 3% level via the Cepheid-based distance scale ladder (the SH0ES and the Carnegie Hubble Program) were first summarized in this Proceeding, followed by a brief discussion on the prospect of using ultra-long period Cepheids (ULPC) in future distance scale work. ULPC are those Cepheids with periods longer than 80 days, which seem to follow a different PL relation than their shorter period Cepheids. It has been suggested that ULPC can be used to determine the Hubble constant in "one-step". However, based on the two ULPCs found in M31, it was found that the large dispersion in derived distance moduli leads to a less accurate distance modulus to M31 compared to the classical Cepheids. This finding might raise an alert regarding the use of ULPCs in future distance scale work.

Magellanic Clouds Cepheids: Thorium Abundances

  • Jeong, Yeuncheol;Yushchenko, Alexander V.;Gopka, Vira F.;Yushchenko, Volodymyr O.;Kovtyukh, Valery V.;Vasil'eva, Svetlana V.
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권1호
    • /
    • pp.19-30
    • /
    • 2018
  • The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC), namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.

INTRODUCING tlc_s05: A CODE TO FIT CEPHEID JHK BAND LIGHT CURVES USING A TEMPLATE APPROACH

  • NGEOW, CHOW-CHOONG;KANBUR, SHASHI M.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.225-227
    • /
    • 2015
  • We introduce a code called tlc_s05, to fit sparsely sampled JHK band Cepheid light curve data with template light curves to derive the mean magnitude. A brief description of the code is provided here. We tested the performance of the code in deriving the mean JHK band magnitudes using simulations, and we found that it is better to observe more than four evenly spaced data points per light curve, which permits tlc_s05 to derive accurate mean magnitudes for Cepheid JHK band light curves.

KMTNET SUPERNOVA PROGRAM VARIABLE OBJECTS I. NGC 2784 FIELD

  • HE, MATTHIAS YANG;MOON, DAE-SIK;NEILSON, HILDING;LEE, JAE-JOON;KIM, SANG CHUL;PAK, MINA;PARK, HONG SOO;KIM, DONG-JIN;LEE, YONGSEOK;KIM, SEUNG-LEE;LEE, CHUNG-UK
    • 천문학회지
    • /
    • 제49권5호
    • /
    • pp.209-223
    • /
    • 2016
  • We present analyses of ~1250 variable sources identified in a 20 square degree field toward NGC 2784 by the KMTNet Supernova Program. We categorize the variable sources into three groups based on their B-band variability. The first group consists of 31 high variability sources with their B-band RMS variability greater than 0.3 magnitudes. The second group of medium variability contains 265 sources with RMS variability between 0.05 and 0.3 magnitudes. The remaining 951 sources belong to the third group of low variability with an RMS variability smaller than 0.05 magnitudes. Of the entire ~1250 sources, 4 clearly show periods of variability greater than 100 days, while the rest have periods shorter than ~51 days or no reliable periods. The majority of the sources show either rather irregular variability or short periods faster than 2 days. Most of the sources with reliable period determination between 2 and 51 days belong to the low-variability group, although a few belong to the medium-variability group. All the variable sources with periods longer than 35 days appear to be very red with B - V > 1.5 and V - I > 2.1 magnitudes. We classify candidates of 51 Cepheids, 17 semi-regular variables, 3 Mira types, 2 RV(B) Tauri stars, 26 eclipsing binary systems and 1 active galactic nucleus. The majority of long-term variables in our sample belong to either Mira or semi-regular types, indicating that long-term variability may be more prominent in post-main sequence phases of late-type stars. The depth of the eclipsing dips of the 26 candidates for eclipsing binaries is equivalent to ~0.61 as the average relative size of the two stars in the binary system. Our results illustrate the power of the KMTNet Supernova Program for future studies of variable objects.