• Title/Summary/Keyword: stars: individual(

Search Result 165, Processing Time 0.023 seconds

PHYSICAL PARAMETERS OF THE OLD OPEN CLUSTER TRUMPLER 5

  • KIM SANG CHUL;SUNG HWANKYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2003
  • We present a study of the old open cluster Trumpler 5 (Tr 5), based on the CDS archival data. From the color-magnitude diagrams of Tr 5, we have found the positions of main-sequence turn-off (MSTO) and red giant clump (RGC) stars. Using the mean magnitude of the RGC stars, we have estimated the reddening toward Tr 5, E(B - V) = 0.60 $\pm$ 0.10. Using the stars common in two data sets and the theoretical isochrones of Padova group, we have estimated the distance modulus $V_o - M_v = 12.64 {\pm} 0.20 (d = 3.4 {\pm} 0.3 kpc)$, the metallicity [Fe/H) = -0.30 $\pm$ 0.10, and the age of 2.4 $\pm$ 0.2 Gyr (log t = 9.38). These metallicity and distance values are consistent with the relation between the metallicity and the Galactocentric distance of other old open clusters, for which we obtain the slope of ${\Delta}[Fe/H]/ R_{gc} = -0.064 {\pm} 0.010\;dex\;kpc^{-1}$.

HST NIC3 PHOTOMETRY OF METAL-RICH GLOBULAR CLUSTERS PALOMAR 6, LILLER 1, AND 47 TUC (NGC 104)

  • Lee, Jae-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.167-180
    • /
    • 2004
  • We present HST NIC3 photometry of metal-rich globular clusters Palomar 6, Liller 1 and 47 Tuc (NGC 104). We discuss the interstellar reddening law for the HST NICMOS F110W/F160W photometric system which depends on the temperature of the source. The distance moduli and interstellar reddening values for Palomar 6 and Liller 1 are estimated by comparing the magnitudes and colors of RHB stars in the clusters with those of 47 Tuc. We obtain $(m-M)_0=14.48$mag and E(B-V)=1.34mag for Palomar 6 and $(m-M)_0=15.17$mag and E(B-V)=2.50 mag for Liller 1.

DISCOVERY OF NEW RR LYRAE STARS IN THE CENTER OF THE GLOBULAR CLUSTER M53

  • Sohn, Sang-Mo;Rey, Soo-Chang;Lee, Young-Wook;Byun, Yong-Ik;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.115-130
    • /
    • 1999
  • We report the discovery of 17 new RR Lyrae variables in the central region ($\rleq1'$) of the globular cluster M53. There candidates were identified by using the Welch & Stetson (1993) technique and confirmed by checking individual light curves in both B and V bands. The color-magnitude diagram of the horizontal-branch stars in the central region is compared with that for stars observed in the outer region by Rey et al. (1998). Including the new data from this study, we estimate the fraction of c typeRR Lyrae variables, n(c)/n(ab + c), to be 0.43 which agrees well with the valuse of other Oosterhoff group II clusters.

  • PDF

THE VI CCD PHOTOMETRY OF THE GLOBULAR CLUSTER M22

  • CHO DONG HWAN;LEE SEE-WOO;SUNG HWANKYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 1998
  • The VI CCD photometry is made for stars in the globular cluster M22 down to $V\approx19^m,\;I\approx18^m$. In the color-magnitude diagram (CMD), red giant branch (RGB), asymtotic giant branch (AGB) and blue horizontal branch (BHB) are well defined. The luminosity functions (LF) of RGB, AGB and BHB stars are derived, discussing deficient gaps and bumps in the CMD. The anomalously wide RGB seen in the BV photometric system is found to disappear in the VI photometric system.

  • PDF

Pixel Intensity Histogram Method for Unresolved Stars: Case of the Arches Cluster

  • Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2014
  • The Arches cluster is a young (2-4 Myr), compact (~1 pc), and massive (${\sim}2{\times}10^4M_{\odot}$) star cluster located ~30 pc away from the Galactic center (GC) in projection. Being exposed to the extreme environment of the GC such as elevated temperature and turbulent velocities in the molecular clouds, strong magnetic fields, and larger tidal forces, the Arches cluster is an excellent target for understanding the effects of star-forming environment on the initial mass function (IMF) of the star cluster. However, resolving stars fainter than ~1 $M_{\odot}$ in the Arches cluster partially will have to wait until an extremely large telescope with adaptive optics in the infrared is available. Here we devise a new method to estimate the shape of the low-end mass function where the individual stars are not resolved, and apply it to the Arches cluster. This method involves histograms of pixel intensities in the observed images. We find that the initial mass function of the Arches cluster should not be too different from that for the Galactic disk such as the Kroupa IMF.

  • PDF

LOW-MASS STAR FORMATION: CURRENT STATUS AND FUTURE PROGRESS WITH ALMA

  • Tafalla, Mario
    • Publications of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.45-57
    • /
    • 2018
  • Low-mass star-formation studies deal with the birth of individual solar-type stars as it occurs in nearby molecular clouds. While this isolated mode of star formation may not represent the most common form of stellar birth, its study often provides first evidence for the general ingredients of star formation, such as gravitational infall, disk formation, or outflow acceleration. Here I briefly review the current status and the main challenges in our understanding of low-mass star formation, with emphasis in the still mysterious pre-stellar phase. In addition to presenting by-now classical work, I also show how ALMA is starting to play a decisive role driving progress in this field.

A Hydrodynamic Study of Stellar Wind Accretion in S-type Symbiotic Stars

  • Lee, Young-Min;Kim, Hyosun;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2019
  • Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant, exhibiting various activities mainly attributed to accretion of a fraction of slow stellar wind emanating from the giant. We perform 3 dimensional hydrodynamical simulations using the FLASH code to investigate the formation and physical structures of an accretion disk in symbiotic stars with binary separation in the range of 2-4 au. Radiative cooling is introduced in the flow in order to avoid acute pressure increase in the vicinity of the accretor that may prevent stable disk formation. By setting the same density condition in front of the bow shock generated in two different velocity fields, the role of ram pressure balancing between the disk and the wind is examined. We find that three main streams (direct stream from the giant, stream following the accretion wake, and stream passing through the bow shock front) all feed the disk, and their individual contributions on the mass accretion onto the white dwarf are explored.

  • PDF

TWO-COLOR CCD PHOTOMETRY OF THE INTERMEDIATE POLAR 1RXS J180340.0+401214

  • Andronov, Ivan L.;Kim, Yong-Gi;Yoon, Joh-Na;Breus, Vitalii V.;Smecker-Hane, Tammy A.;Chinarova, Lidia L.;Han, Won-Yong
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.3
    • /
    • pp.89-96
    • /
    • 2011
  • We present results of two-color VR photometry of the intermediate polar RXS J1803. The data were aquired using the Korean 1-m telescope located at Mt. Lemmon, USA. Different "high" and "low" luminosity states, similar to other intermediate polars, were discovered. No statistically significant variability of the color index with varying luminosity was detected. The orbital variability was found to be not statistically significant. Spin maxima timings were determined, as well as the photometric ephemeris for the time interval of our observations. The spin period variations, caused by interaction of the accretion structure with the rotating magnetic white dwarf, were also detected. These variations are of complicated character, and their study requires further observations. We determine the color transformation coefficients for our photometric systems, and improve on the secondary photometric standards.

A SEARCH FOR EXOPLANETS AROUND NORTHERN CIRCUMPOLAR STARS VI. DETECTION OF PLANETARY COMPANIONS ORBITING THE GIANTS HD 60292 AND HD 112640

  • Lee, Byeong-Cheol;Park, Myeong-Gu;Han, Inwoo;Bang, Tae-Yang;Oh, Hyeong-Il;Choi, Yeon-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • We report the detection of exoplanet candidates in orbits around HD 60292 and HD 112640 from a radial velocity (RV) survey. The stars exhibit RV variations with periods of 495 ±3 days and 613±6 days, respectively. These detections are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey using the fiber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory in Korea. The aim of the survey is to search for planetary or substellar companions. We argue that the periodic RV variations are not related to surface inhomogeneities; rather, Keplerian motions of planetary companions are the most likely interpretation. Assuming stellar masses of 1.7 ± 0.2M (HD 60292) and 1.8 ± 0.2M (HD 112640), we obtain minimum planetary companion masses of 6.5 ± 1.0MJup and 5.0 ± 1.0MJup, and periods of 495.4 ± 3.0 days and 613.2 ± 5.8 days, respectively.

UNVEILING COMPLEX OUTFLOW STRUCTURE OF UY Aur

  • PYO, TAE-SOO;HAYASHI, MASAHIKO;BECK, TRACY;DAVIS, CHRISTOPHER J.;TAKAMI, MICHIHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • We present [$Fe\;{\small{II}}$] ${\lambda}1.257{\mu}m$ spectra toward the interacting binary UY Aur with 0".14 angular resolution, obtained with the Near infrared Integral Field Spectrograph (NIFS) combined with the adaptive optics system Altair of the GEMINI observatory. In the [$Fe\;{\small{II}}$] emission, UY Aur A (primary) is brighter than UY Aur B (secondary). The blueshifted and redshifted emission between the primary and secondary show a complicated structure. The radial velocities of the [$Fe\;{\small{II}}$] emission features are similar for UY Aur A and B: ${\sim}-100km\;s^{-1}$ and ${\sim}+130km\;s^{-1}$ for the blueshifted and redshifted components, respectively. Considering the morphologies of the [$Fe\;{\small{II}}$] emissions and bipolar outflow context, we concluded that UY Aur A drives fast and widely opening outflows with an opening angle of ${\sim}90^{\circ}$ while UY Aur B has micro collimated jets.