• 제목/요약/키워드: stars: activity

검색결과 66건 처리시간 0.027초

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

THE LONGEVITY OF CIRCUMSTELLAR DISKS: THE η CHAMAELEONTIS CLUSTER

  • LYO A-RAN;LAWSON W. A.
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.241-244
    • /
    • 2005
  • We have analysed near-infrared JHKL observations of the members of the $\approx$9 Myr-old $\eta$ Chamaeleontis cluster. Using (J - H)/(K - L) and (H - K)/(K - L) IR colour-colour diagrams for the brightest 15 members of the cluster, we find the fraction of stellar systems with near-IR excess emission was 0.60 $\pm$ 0.13 (2$\sigma$). For the CTT and WTT star population, we also find a strong correlation between the IR excess and Ha emission which is also known as an accretion indicator. The (K - L) excess of these stars appears to indicate a wide range of star-disk activity; from a CTT star with high levels of accretion, to CTT - WTT transitional objects with evidence for some on-going accretion, and WTT stars with weak or absent IR excesses. Among the brightest 15 members, four stars (RECX 5, 9, 11 and ECHA J0843.3-7905) with IR excesses ${\Delta}$(K - L) > 0.4 mag and strong or variable optical emission were identified as likely experiencing on-going mass accretion from their circumstellar disks which we confirmed their accretion disks from the optical high-resolution echelle spectroscopic study. The result-ing accretion fraction of 0.27 $\pm$ 0.13 (2$\sigma$) suggests that the accretion phase, in addition to the disks themselves, can endure for at least ${\~}$10 Myr.

ANALYSIS OF LONG PERIOD RADIAL VELOCITY VARIATIONS FOR HD 18438 AND HD 158996

  • Bang, Tae-Yang;Lee, Byeong-Cheol;Jeong, Gwang-hui;Han, Inwoo;Park, Myeong-Gu
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.42.4-43
    • /
    • 2017
  • We investigate the long-period radial velocity (RV) variations for M giant HD 18438 and K giant HD 158996 using the high-resolution Bohyunsan Observatory Echelle Spectrograph at the 1.8m telescope of Bohyunsan Optical Astronomy Observatory in Korea. These two target stars are important because HD 18438 is the largest star and HD 158996 is the brightest star for exoplantary system candidate so we can understarnd how evolved stars affect planets by researching these stars. We calculated precise RV measurements of 38 and 24 spectra from November 2010 to January 2017 and June 2010 to January 2017, respectively. We dreived the RV variation period for 719.0 days of HD 18438, 775.6 days for HD 158996. We conclude that the RV variation of HD 158996 is caused by planetary companion which has the mass of 14.7 MJup, semi-major axis of 2.2 AU, and eccentricity of 0.27 assuming the stellar mass of $2.34M{\odot}$. On the other hand, the origin of RV variation of HD 18438 with period of 719.0 days is still uncertain. It might be caused by stellar chromospheric activity or planetary companion, so more observations and tests are required.

  • PDF

SPECTROSCOPIC AND PHOTOMETRIC STUDY OF STARBURST GALAXIES: OPTICAL AND NEAR INFRARED PROPERTIES OF A BLUE COMPACT DWARF GALAXY MRK 49 IN THE VIRGO CLUSTER

  • Sung, Eon-Chang;Kyeong, Jae-Mann;Byun, Yong-Ik
    • 천문학회지
    • /
    • 제41권5호
    • /
    • pp.121-137
    • /
    • 2008
  • We present optical and near-infrared imaging and long-slit spectroscopy for the blue compact dwarf galaxy (BCD) Mrk 49 in the Virgo Cluster. The surface brightness distribution analysis shows that Mrk 49 consists of an off-centered blue bright compact core of r = 10" and a red faint outer exponential envelope. The $H_{\alpha}$ image and color difference suggest that these two components have different stellar populations: a high surface brightness population of massive young stars and an underlying low surface brightness population of older stars. The redder near-infrared colors of the inner most region suggest that the near-infrared flux of Mrk 49 originates from evolved massive stars associated with the current star-forming activity. The total apparent magnitude is $B_T\;=\;14.32$ mag and the mean effective surface brightness is ${\mu}_{eff}(B)\;=\;21.56$ mag $arcsec^{-2}$. Long-slit spectroscopy shows that Mrk 49 rotates apparently as a solid body within r = 10" in a plane at position angle 55 degrees with an amplitude of about $20\;km\;sec^{-1}$. The measured radial velocity of Mrk 49 was derived as $1,535\;km\;sec^{-1}$; and the total mass of stars and gases is in the range of 3 to $6\;{\times}\;10^9\;M_{\odot}$. The mass-to-light ratios for the central region of Mrk 49 in I and B band are estimated 1.0 and 0.5, respectively. The upper limit of the dark matter to visible matter ratio seems to be < 5. The oxygen abundance is $12\;+\;\log(O/H)\;=\;8.21\;{\pm}\; 0.1$ which is about one quarter of the solar value while the relative helium abundance appears to be similar to that of the sun.

STARBURST AND AGN CONNECTIONS AND MODELS

  • SCOVILLE NICK
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.167-175
    • /
    • 2003
  • There is accumulating evidence for a strong link between nuclear starbursts and AGN. Molecular gas in the central regions of galaxies plays a critical role in fueling nuclear starburst activity and feeding central AGN. The dense molecular ISM is accreted to the nuclear regions by stellar bars and galactic interactions. Here we describe recent observational results for the OB star forming regions in M51 and the nuclear star burst in Arp 220 - both of which have approximately the same rate of star formation per unit mass of ISM. We suggest that the maximum efficiency for forming young stars is an Eddington-like limit imposed by the radiation pressure of newly formed stars acting on the interstellar dust. This limit corresponds to approximately 500 $L_{\bigodot} / M_{\bigodot}$ for optically thick regions in which the radiation has been degraded to the NIR. Interestingly, we note that some of the same considerations can be important in AGN where the source of fuel is provided by stellar evolution mass-loss or ISM accretion. Most of the stellar mass-loss occurs from evolving red giant stars and whether their mass-loss can be accreted to a central AGN or not depends on the radiative opacity of the mass-loss material. The latter depends on whether the dust survives or is sublimated (due to radiative heating). This, in turn, is determined by the AGN luminosity and the distance of the mass-loss stars from the AGN. Several AGN phenomena such as the broad emission and absorption lines may arise in this stellar mass-loss material. The same radiation pressure limit to the accretion may arise if the AGN fuel is from the ISM since the ISM dust-to-gas ratio is the same as that of stellar mass-loss.

PERIOD VARIATION STUDY OF THE NEGLECTED ALGOL ECLIPSING BINARY SYSTEM V346 CYGNIUS

  • Hanna, Magdy
    • 천문학회지
    • /
    • 제47권3호
    • /
    • pp.99-104
    • /
    • 2014
  • We present the rst period variation study for the Algol eclipsing binary V346 Cyg by constructing the (O-C) residual diagram using all the available precise minima times. We conclude that the period variation can be explained by a sine-like variation due to the presence of a third body orbiting the binary in about $68.89{\pm}4.69$ years, together with a long-term orbital period decrease ($dP/dt=-1.23{\times}10^{-7}day/yr$) that can be interpreted to be due to slow mass loss from the ${\delta}$-Scuti primary component. The sinusoidal variation may also be explained by using the the Applegate (1992) mechanism involving cyclic magnetic activity due to star-spots on the secondary component. The present preliminary solution needs more precise photometric observations to be confirmed.

MASS TRANSFER AND LIGHT TIME EFFECT STUDIES FOR AU SERPENTIS

  • Amin, S.M.
    • 천문학회지
    • /
    • 제48권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The orbital period changes of the W UMa eclipsing binary AU Ser are studied using the (O-C) method. We conclude that the period variation is due to mass transfer from the primary star to the secondary one at a very low and decreasing rate $dP/dt=-8.872{\times}10^{-8}$, superimposed on the sinusoidal variation due to a third body orbiting the binary with period $42.87{\pm}3.16$ years, orbital eccentricity $e=0.52{\pm}0.12$ and a longitude of periastron passage ${\omega}=133^{\circ}.7{\pm}15$. On studying the magnetic activity, we have concluded that the Applegate mechanism failed to describe the cycling variation of the (O-C) diagram of AU Ser.

STELLAR MAGNETIC ACTIVITY AND LONG TERM LUMINOSITY VARIATIONS OF LATE TYPE STARS.: I. ON GENERALIZATION OF ${\ddot{O}}PIK'S$ CONVECTION THEORY TO A ROTATING MEDIUM

  • Park, Chang-Bum;Yun, Hong-Sik;Lee, Jeong-Woo
    • 천문학회지
    • /
    • 제18권2호
    • /
    • pp.86-99
    • /
    • 1985
  • A generalization of the original ${\ddot{O}}pik's$ cellular convection theory has been made to accomodate a rotating convective medium. With the use of the formulation, a set of rotating model envelopes of the sun and late type main sequence stars have been constructed under three different rotation periods. Their thermal structures are presented and characteristics of their convection are discussed in the context of stellar dynamo. In the present study it is noted that the rotational angular velocity increases in wards with depth, and its increase turns out to be about 6% at the bottom of the solar convection zone.

  • PDF

The rise and fall of dusty star formation in (proto-)clusters

  • Lee, Kyung-Soo
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.38.1-38.1
    • /
    • 2019
  • The formation and evolution of galaxies is known to be fundamentally linked to the local environment in which they reside. In the highest-density cluster environments, galaxies tend to be more massive, have lower star formation rates and dust content, and a higher fraction have elliptical morphologies. The stellar populations of these cluster galaxies are older implying that they formed the bulk of their stars much earlier and have since evolved passively. Quantifying the specific environmental factors that contribute to shaping cluster galaxies over the Hubble time and measuring their early evolution can only be accomplished by directly tracing the galaxy growth in young clusters and forming porto-clusters. In this talk, I will present a novel technique designed to map out the total dust obscured star formation relative to where existing stars lie. I will demonstrate that this technique can be used 1) to determine if/where/when the activity is heightened or suppressed in dense cluster environment; 2) to measure the total mass and spatial distribution of stellar populations; and 3) to better inform theoretical models. Our ongoing work to extend this analysis out to protoclusters (z~2-4) will be discussed.

  • PDF

A SIGNATURE OF CHROMOSPHERIC ACTIVITY IN BROWN DWARFS: A RECENT RESULT FROM NIRLT MISSION PROGRAM

  • Sorahana, Satoko;Suzuki, Takeru K.;Yamamura, Issei
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.131-133
    • /
    • 2017
  • We present the latest results from the Mission Program NIRLT (PI: I.Yamamura), the near-infrared spectroscopy of brown dwarfs using the AKARI/IRC grism mode with the spectral resolution of ~ 120. The near-infrared spectra in the wavelength range between 2.5 and $5.0{\mu}m$ are especially important to study the brown dwarf atmospheres because of the presence of major molecular bands, including $CH_4$ at $3.3{\mu}m$, $CO_2$ at $4.2{\mu}m$, CO at $4.6{\mu}m$, and $H_2O$ around $2.7{\mu}m$. We observed 27 sources, and obtained 16 good spectra. Our model fitting reveals deviations between theoretical model and observed spectra in this wavelength range, which may be attributed to the physical condition of the upper atmosphere. The deviations indicate additional heating, which we hypothesize to be due to chromospheric activity. We test this effect by modifying the brown dwarf atmosphere model to artificially increase the temperature of the upper atmosphere, and compare the revised model with observed spectra of early- to mid-L type objects with $H{\alpha}$ emission. We find that the chemical structure of the atmosphere changes dramatically, and the heating model spectra of early-type brown dwarfs can be considerably improved to match the observed spectra. Our result suggests that chromospheric activity is essential to understand early-type brown dwarf atmospheres.