DOI QR코드

DOI QR Code

STARBURST AND AGN CONNECTIONS AND MODELS

  • Published : 2003.09.01

Abstract

There is accumulating evidence for a strong link between nuclear starbursts and AGN. Molecular gas in the central regions of galaxies plays a critical role in fueling nuclear starburst activity and feeding central AGN. The dense molecular ISM is accreted to the nuclear regions by stellar bars and galactic interactions. Here we describe recent observational results for the OB star forming regions in M51 and the nuclear star burst in Arp 220 - both of which have approximately the same rate of star formation per unit mass of ISM. We suggest that the maximum efficiency for forming young stars is an Eddington-like limit imposed by the radiation pressure of newly formed stars acting on the interstellar dust. This limit corresponds to approximately 500 $L_{\bigodot} / M_{\bigodot}$ for optically thick regions in which the radiation has been degraded to the NIR. Interestingly, we note that some of the same considerations can be important in AGN where the source of fuel is provided by stellar evolution mass-loss or ISM accretion. Most of the stellar mass-loss occurs from evolving red giant stars and whether their mass-loss can be accreted to a central AGN or not depends on the radiative opacity of the mass-loss material. The latter depends on whether the dust survives or is sublimated (due to radiative heating). This, in turn, is determined by the AGN luminosity and the distance of the mass-loss stars from the AGN. Several AGN phenomena such as the broad emission and absorption lines may arise in this stellar mass-loss material. The same radiation pressure limit to the accretion may arise if the AGN fuel is from the ISM since the ISM dust-to-gas ratio is the same as that of stellar mass-loss.

Keywords

References

  1. ApJ v.522 Aalto-Berbman,S.;Huetemeister,S.;Scoville,N.Z.;Thaddeus,P. https://doi.org/10.1086/307610
  2. ApJ v.454 Baan,W.A.;Haschick,A.D. https://doi.org/10.1086/176526
  3. ApJ v.479 Bahcall,J.N.;Kirhakos,S.;Saxe,D.H.;Schneider,D.P. https://doi.org/10.1086/303926
  4. ApJ v.200 Bohlin,R.C. https://doi.org/10.1086/153803
  5. AJ v.117 Bryant,P.M.;Scoville,N.Z. https://doi.org/10.1086/300879
  6. ApJ v.507 Downes,D.;Solomon,P.M. https://doi.org/10.1086/306339
  7. MNRAS v.203 Elmegreen,B.G. https://doi.org/10.1093/mnras/203.4.1011
  8. AJ v.94 Foltz,C.B.;Chaffee,F.H.;Hewett,P.C.;MacAlpine,G.M.;Turnshek,D.A.;Weymann,R.J.;Andersen,S.F. https://doi.org/10.1086/114577
  9. ApJ v.354 Graham,J.R.(et al.) https://doi.org/10.1086/185709
  10. MNRAS v.214 Joseph,R.D.;Wright,G.S. https://doi.org/10.1093/mnras/214.2.87
  11. ApJ v.337 Kennicutt,R.C.;Edgar,B.K.;Hodge,P.W. https://doi.org/10.1086/167147
  12. ApJ v.470 Korista,K.;Hamann,F.;Ferguson,J.;Ferland,G. https://doi.org/10.1086/177873
  13. ApJ v.283 MacKenty,J.W.;Stockton,A. https://doi.org/10.1086/162274
  14. AJ v.115 Magorrian (et al.) https://doi.org/10.1086/300353
  15. MNRAS v.308 Merritt,D.;Ferrarese,L. https://doi.org/10.1046/j.1365-8711.1999.02676.x
  16. ApJ v.308 Neugebauer,G.(et al.) https://doi.org/10.1086/164553
  17. ApJ v.332 Norman,C.A.;Scoville,N.Z. https://doi.org/10.1086/166637
  18. ApJ v.476 McKee,C.F.;Williams,J.P. https://doi.org/10.1086/303587
  19. AJ v.115 Oey;Clarke,C.J. https://doi.org/10.1086/300290
  20. A&A v.309 Petit,H.;Hua,C.T.;Bersier,D.;Courtes,G.
  21. IAU Symposium no.146 Dynamics of Galaxies and Their Molecular Cloud Distributions Radford,S.J.E.;Delannoy,J.;Downes,D.;Guelin,M.;Guilloteau,S.;Greve,A.;Lucas,R.;Morris,D.;Wink,J.;F.Combes(ed.);F.Casoli(ed.)
  22. AJ v.103 Rand,R.J. https://doi.org/10.1086/116103
  23. ApJ v.328 Sanders,D.B.(et al.) https://doi.org/10.1086/185155
  24. ApJ v.514 Sakamoto,K.;Scoville,N.Z.;Yun,M.S.;Crosas,M.;Genzel,R.(et al.) https://doi.org/10.1086/306951
  25. ApJ v.332 Scoville,N.Z.;Norman,C.A. https://doi.org/10.1086/166641
  26. ApJ v.451 Scoville,N.Z.;Norman,C.A. https://doi.org/10.1086/176239
  27. Interstellar Processes Scoville,N.Z.;Sanders,D.B.;H.A.Thronson(ed.);D.Hollenbach(ed.)
  28. ApJ v.310 Scoville,N.Z.;Sanders,D.B.;Clemens,D.P. https://doi.org/10.1086/184785
  29. ApJ v.366 Scoville,N.Z.;Sargent,A.I.;Snaders,D.B. https://doi.org/10.1086/185897
  30. AJ Scoville,N.Z.;Polletta,M.C.;Ewald,S.;Stolovy,S.R.;Thompson,R.;Rieke,M.
  31. ApJ v.484 Scoville,N.Z.;Yun,M.S.;Bryant,P.M. https://doi.org/10.1086/304368
  32. AJ v.119 Scoville,N.Z.;Evans,A.S.;Thompson,R.;Rieke, Hines, D.;Low,F.;Dinshaw,N.;Surace,J.;Armus,L. https://doi.org/10.1086/301248
  33. AJ Scoville,N.Z.;Frayer,D.T.;Schinnerer,E.;Christopher,M.
  34. ApJ v.524 Tacconi,L.J.;Genzel,R.;Tecza,M.;Gallimore,J.F.;Downes,D.;Scoville,N.Z. https://doi.org/10.1086/307839
  35. AJ v.120 Thilker,D.;Braun,R.;Walterbos,R. https://doi.org/10.1086/316852
  36. QSO Absorption Lines: Probing the Universe v.17 Turnshek,D.A.;C.Blades(ed.);D.Turnshek(ed.);C.Norman(ed.)
  37. ApJ v.325 Turnshek,D.A.;Foltz,C.B.;Grillmair,C.J.;Weymann,R.J.
  38. a v.195 van der Hulst,J.M.;Kennicutt,R.C.;Crane,P.C.;Rots,A.H.
  39. ApJ v.522 Veilleux,D.;Kim,D.C.;Sanders,D.B. https://doi.org/10.1086/307634
  40. Astrophysics of Active Galaxies and Quasi-Stellar Objects v.333 Weymann,R.J.;Turnshek,D.A.;Christansen,W.A.;J.S.Miller(ed.)

Cited by

  1. Herschelobservations of water vapour in Markarian 231 vol.518, 2010, https://doi.org/10.1051/0004-6361/201014664
  2. Cosmic ray-driven winds in the Galactic environment and the cosmic ray spectrum vol.470, pp.1, 2017, https://doi.org/10.1093/mnras/stx1214
  3. Mapping Large‐Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass vol.621, pp.1, 2005, https://doi.org/10.1086/427277
  4. ALMA IMAGING OF GAS AND DUST IN A GALAXY PROTOCLUSTER AT REDSHIFT 5.3: [C II] EMISSION IN “TYPICAL” GALAXIES AND DUSTY STARBURSTS ≈1 BILLION YEARS AFTER THE BIG BANG vol.796, pp.2, 2014, https://doi.org/10.1088/0004-637X/796/2/84
  5. Gravitational Instability in Radiation Pressure–Dominated Backgrounds vol.684, pp.1, 2008, https://doi.org/10.1086/589227
  6. THE EFFECTS OF X-RAY FEEDBACK FROM ACTIVE GALACTIC NUCLEI ON HOST GALAXY EVOLUTION vol.738, pp.1, 2011, https://doi.org/10.1088/0004-637X/738/1/16
  7. THE REDSHIFT AND NATURE OF AzTEC/COSMOS 1: A STARBURST GALAXY ATz= 4.6 vol.731, pp.2, 2011, https://doi.org/10.1088/2041-8205/731/2/L27
  8. NGC 6845: metallicity gradients and star formation in a complex compact group vol.453, pp.3, 2015, https://doi.org/10.1093/mnras/stv1798
  9. How stellar feedback simultaneously regulates star formation and drives outflows vol.465, pp.2, 2017, https://doi.org/10.1093/mnras/stw2888
  10. THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20 vol.798, pp.1, 2015, https://doi.org/10.1088/2041-8205/798/1/L18
  11. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES vol.772, pp.2, 2013, https://doi.org/10.1088/0004-637X/772/2/112
  12. Can molecular clouds live long? vol.353, pp.2, 2014, https://doi.org/10.1007/s10509-014-2084-7
  13. Investigations of star formation in galaxies using ALMA vol.313, pp.1-3, 2008, https://doi.org/10.1007/s10509-007-9642-1
  14. The physics of galactic winds driven by active galactic nuclei vol.425, pp.1, 2012, https://doi.org/10.1111/j.1365-2966.2012.21512.x
  15. A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum vol.843, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa789a
  16. SUBMILLIMETER INTERFEROMETRY OF THE LUMINOUS INFRARED GALAXY NGC 4418: A HIDDEN HOT NUCLEUS WITH AN INFLOW AND AN OUTFLOW vol.764, pp.1, 2013, https://doi.org/10.1088/0004-637X/764/1/42
  17. ALMA Resolves the Nuclear Disks of Arp 220 vol.836, pp.1, 2017, https://doi.org/10.3847/1538-4357/836/1/66
  18. On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum‐driven Winds vol.618, pp.2, 2005, https://doi.org/10.1086/426067
  19. Formation ofz∼6 Quasars from Hierarchical Galaxy Mergers vol.665, pp.1, 2007, https://doi.org/10.1086/519297
  20. (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies vol.597, 2017, https://doi.org/10.1051/0004-6361/201628128
  21. A Close Look at Star Formation around Active Galactic Nuclei vol.671, pp.2, 2007, https://doi.org/10.1086/523032
  22. Herschelspectroscopic observations of the compact obscured nucleus in Zw 049.057 vol.580, 2015, https://doi.org/10.1051/0004-6361/201526114
  23. ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7 vol.842, pp.2, 2017, https://doi.org/10.3847/2041-8213/aa74b0
  24. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES vol.727, pp.2, 2011, https://doi.org/10.1088/0004-637X/727/2/97
  25. Sub-Eddington star-forming regions are super-Eddington: momentum-driven outflows from supersonic turbulence vol.455, pp.1, 2016, https://doi.org/10.1093/mnras/stv2331
  26. THE DISRUPTION OF GIANT MOLECULAR CLOUDS BY RADIATION PRESSURE & THE EFFICIENCY OF STAR FORMATION IN GALAXIES vol.709, pp.1, 2010, https://doi.org/10.1088/0004-637X/709/1/191
  27. PHOTON FEEDBACK: SCREENING AND THE EDDINGTON LIMIT vol.772, pp.2, 2013, https://doi.org/10.1088/2041-8205/772/2/L21
  28. Spectro-morphology of galaxies: A multi-wavelength (UV-R) classification method vol.434, pp.1, 2005, https://doi.org/10.1051/0004-6361:200400138
  29. Radiation Pressure–supported Starburst Disks and Active Galactic Nucleus Fueling vol.630, pp.1, 2005, https://doi.org/10.1086/431923
  30. A MASSIVE MOLECULAR GAS RESERVOIR IN THEz= 5.3 SUBMILLIMETER GALAXY AzTEC-3 vol.720, pp.2, 2010, https://doi.org/10.1088/2041-8205/720/2/L131
  31. DIRECT NUMERICAL SIMULATION OF RADIATION PRESSURE-DRIVEN TURBULENCE AND WINDS IN STAR CLUSTERS AND GALACTIC DISKS vol.760, pp.2, 2012, https://doi.org/10.1088/0004-637X/760/2/155
  32. ALMA IMAGING OF HCN, CS, AND DUST IN ARP 220 AND NGC 6240 vol.800, pp.1, 2015, https://doi.org/10.1088/0004-637X/800/1/70
  33. HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220 vol.799, pp.1, 2015, https://doi.org/10.1088/0004-637X/799/1/10
  34. The radio core structure of the luminous infrared galaxy NGC 4418 vol.566, 2014, https://doi.org/10.1051/0004-6361/201323303
  35. Cosmic ray driven Galactic winds vol.462, pp.4, 2016, https://doi.org/10.1093/mnras/stw1966
  36. A COMPREHENSIVE VIEW OF A STRONGLY LENSEDPLANCK-ASSOCIATED SUBMILLIMETER GALAXY vol.753, pp.2, 2012, https://doi.org/10.1088/0004-637X/753/2/134
  37. RESOLVING GAS FLOWS IN THE ULTRALUMINOUS STARBURST IRAS 23365+3604 WITH KECK LGSAO/OSIRIS vol.819, pp.1, 2016, https://doi.org/10.3847/0004-637X/819/1/49
  38. Modeling the Dust Properties ofz∼ 6 Quasars with ART2—All‐Wavelength Radiative Transfer with Adaptive Refinement Tree vol.678, pp.1, 2008, https://doi.org/10.1086/529364
  39. P CYGNI PROFILES OF MOLECULAR LINES TOWARD ARP 220 NUCLEI vol.700, pp.2, 2009, https://doi.org/10.1088/0004-637X/700/2/L104