• Title/Summary/Keyword: starlike functions and convex functions

Search Result 103, Processing Time 0.022 seconds

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

STRONG DIFFERENTIAL SUBORDINATION AND APPLICATIONS TO UNIVALENCY CONDITIONS

  • Antonino Jose- A.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.311-322
    • /
    • 2006
  • For the Briot-Bouquet differential equations of the form given in [1] $${{\mu}(z)+\frac {z{\mu}'(z)}{z\frac {f'(z)}{f(z)}\[\alpha{\mu}(z)+\beta]}=g(z)$$ we can reduce them to $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$ where $$v(z)=\alpha{\mu}(z)+\beta,\;h(z)={\alpha}g(z)+\beta\;and\;F(z)=f(z)/f'(z)$$. In this paper we are going to give conditions in order that if u and v satisfy, respectively, the equations (1) $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$, $${{\mu}(z)+G(z)\frac {v'(z)}{v(z)}=g(z)$$ with certain conditions on the functions F and G applying the concept of strong subordination $g\;\prec\;\prec\;h$ given in [2] by the author, implies that $v\;\prec\;{\mu},\;where\;\prec$ indicates subordination.

ANALYTIC AND GEOMETRIC PROPERTIES OF OPEN DOOR FUNCTIONS

  • Li, Ming;Sugawa, Toshiyuki
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.267-280
    • /
    • 2017
  • In this paper, we study analytic and geometric properties of the solution q(z) to the differential equation q(z) + zq'(z)/q(z) = h(z) with the initial condition q(0) = 1 for a given analytic function h(z) on the unit disk |z| < 1 in the complex plane with h(0) = 1. In particular, we investigate the possible largest constant c > 0 such that the condition |Im [zf"(z)/f'(z)]| < c on |z| < 1 implies starlikeness of an analytic function f(z) on |z| < 1 with f(0) = f'(0) - 1 = 0.