• Title/Summary/Keyword: star abundance

Search Result 70, Processing Time 0.028 seconds

The Evolution of the Mass-Metallicity Relation at 0.20 < z < 0.35

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2013
  • We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on $H{\alpha}$ emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.

Water vapor in high-mass star-forming regions and PDRs: the Herschel/HIFI view

  • Choi, Yunhee;van der Tak, Floris F.S.;van Dishoeck, Ewine F.;Bergin, Edwin A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.42.2-43
    • /
    • 2015
  • Massive stars play a major role in the interstellar energy budget and the shaping of the galactic environment. The water molecule is thought to be a sensitive tracer of physical conditions and dynamics in star-forming regions because of its large abundance variations between hot and cold regions. Herschel/HIFI allows us to observe the multiple rotational transitions of H2O including the ground-state levels, and its isotopologues toward high-mass star-forming regions in different evolutionary stages. Photodissociation regions (PDRs) are also targeted to investigate the distribution of water and its chemistry. We present line profiles and maps of H2O using data from two guaranteed-time key programs "Water In Star-forming regions with Herschel" and "Herschel observations of EXtra-Ordinary Sources". We analyze the temperature and density structures using LTE and non-LTE methods. We also estimate turbulent and expansion velocities, and abundance of water in the inner and outer envelopes using the 1D radiative transfer code. Around high-mass protostars we find H2O abundances of ~10-8-10-9 for the outer envelope and ~10-4-10-5 for the inner envelope, and expansion and turbulent velocities range from 1.0 km s-1 to 2.0 km s-1. The abundances and kinematic parameters of the sources do not show clear trends with evolutionary indicators. The Herschel/HIFI mapping observations of H2O toward the Orion Bar PDR show that H2O emission peaks between the shielded dense gas and the radicals position, in agreement with the theoretical and the observational PDR structure. The derived H2O abundance is ~10-7 and peaks at the depth of AV ~8 mag from the ionization front. Together with the low ortho-to-para ratio of H2O (~1) presented by Choi et al. (2014), our results show that the chemistry of water in the Orion Bar is dominated by photodesorption and photodissociation.

  • PDF

Environmental effect on the chemical properties of star forming galaxies in the Virgo cluster

  • Chung, Jiwon;Rey, Soo-Chang;Kim, Suk;Lee, Ung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.46.2-46.2
    • /
    • 2013
  • We utilize Sloan Digital Sky Survey DR7 spectroscopic data of ~380 star forming galaxies in the Virgo cluster to investigate their chemical properties depending on the environments. The chemical evolution of galaxies is linked to their star formation histories as well as to the gas interchange in different environments. We derived star formation rate (SFR) and gaseous metallicity (e.g., oxygen abundance) of star forming galaxies. Combining with GALEX ultraviolet photometry and ALFALFA HI 21 cm data, we examine the relations between SFRs, metallicity, and HI deficiency of galaxies in various regions of the Virgo cluster. We also quantify the degree of ram pressure around galaxy using the ROSAT X-ray surface brightness map. We discuss environmental effects on the chemical properties and evolution of star forming galaxies.

  • PDF

Chemical Properties of Star Forming Galaxies in the Cluster Environment

  • Chung, Jiwon;Rey, Soo-Chang;Kim, Suk;Sung, Eon-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • We utilize Sloan Digital Sky Survey DR7 spectroscopic data of ~340 star forming galaxies in the Virgo cluster to investigate their chemical properties depending on the environments. The chemical evolution of galaxies is linked to their star formation histories (SFHs), as well as to the gas interchange in different environments. In this sense, galaxy metallicity could be an observable parameter providing information on the impact of the environment on the galaxy SFH and/or the galaxy gas content. Thus, we derived gaseous metallicity (e.g., oxygen abundance) of star forming galaxies located in different regions of the Virgo cluster using well-known empirical calibrations. We also estimated their star formation rate (SFR) using H alpha luminosity. Inorder to investigate the chemical properties of these galaxies, we examined relations between various parameters: metallicity vs. luminosity, SFR vs. luminosity, and metallicity vs. cluster-centric radius. From our results, we discuss environmental effects of cluster to the chemical properties of star forming galaxies.

  • PDF

CHEMICAL EVOLUTION OF THE GALAXY: RADIAL PROPERTIES

  • PARK BYEONG-GON;KANG YONG HEE;LEE SEE-WOO
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.63-73
    • /
    • 1996
  • The previous study of chemical evolution of the Galaxy is extended to the radial properties of the Galactic disk. The present model includes radial dependency of the time-dependent bimodal IMF, radial flow of material in the disk, and the change of type I supernova explosion rate with radial distance from the disk center as model parameters and observed gas and stellar density distributions and metallicity abundance gradient as observational constraints. The results of two models in this study explain the observed gas and stellar density distributions well, with the slope of the gas density gradient in the region of 4.5 kpc$Y_1$ and -0.123dex/kpc in model $Y_2$, respectively, which fit well the observed gradient of -0.l1dex/kpc. The abundance gradient reproduced in model $Y_1$ is getting flatter with decreasing radius, while that in model $Y_2$ is getting steeper, which fits better the observed abundance gradient. This result shows the necessity of exponentially increasing type I supernova explosion rate with decreasing radius in order to explain the observed abundance gradient in the disk. The fitness of observed density distribution and star formation rate distribution justifies the reliability of time-dependent bimodal IMF as a compound quantitative chemical evolution model of the Galaxy. The temporal variations of metallicity gradients for carbon, nitrogen and oxygen are also shown.

  • PDF

Theoretical Extinction Coefficients in ugriz

  • Han, Jiwon;An, Deokkeun;Lee, Young Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.67.4-67.4
    • /
    • 2019
  • We present extinction coefficients in the photometric filter system ugriz of the Sloan Digital Sky Survey, over a wide range of stellar properties based on theoretical stellar spectra generated using the ATLAS9 stellar models. Our computed coefficient values are essentially independent of a bulk metallicity or alpha-element abundance of a star, while they are a sensitive function of effective temperature and to a moderate extent of surface gravity of a star.

  • PDF

Unveiling Quenching History of Cluster Galaxies Using Phase-space Analysis

  • Rhee, Jinsu;Smith, Rory;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2019
  • We utilize times since infall of cluster galaxies obtained from Yonsei Zoom-in Cluster Simulation (YZiCS), the cosmological hydrodynamic N-body simulations, and star formation rates from the SDSS data release 10 to study how quickly late-type galaxies are quenched in the cluster environments. In particular, we confirm that the distributions of both simulated and observed galaxies in phase-space diagrams are comparable and that each location of phase-space can provide the information of times since infall and star formation rates of cluster galaxies. Then, by limiting the location of phase-space of simulated and observed galaxies, we associate their star formation rates at z ~ 0.08 with times since infall using an abundance matching technique that employs the 10 quantiles of each probability distribution. Using a flexible quenching model covering different quenching scenarios, we find the star formation history of satellite galaxies that best reproduces the obtained relationship between time since infall and star formation rate at z ~ 0.08. Based on the derived star formation history, we constrain the quenching timescale (2 - 7 Gyr) with a clear stellar mass trend and confirm that the refined model is consistent with the "delayed-then-rapid" quenching scenario: the constant delayed phase as ~ 2.3 Gyr and the quenching efficiencies (i.e., e-folding timescale) outside and inside clusters as ~ 2 - 4 Gyr (${\propto}M_*^{-1}$) and 0.5 - 1.5 Gyr (${\propto}M_*^{-2}$), Finally, we suggest: (i) ram-pressure is the main driver of quenching of satellite galaxies for the local Universe, (ii) the quenching trend on stellar mass at z > 0.5 indicates other quenching mechanisms as the main driver.

  • PDF

IMPACT OF THE LOW SOLAR ABUNDANCE ON THE AGES OF GLOBULAR CLUSTERS

  • Yi, Su-Kyoung K.;Kim, Yong-Cheol
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.4
    • /
    • pp.135-139
    • /
    • 2010
  • We present the result of our investigation on the impact of the low Solar abundance of Asplund and collaborators (2004) on the derived ages for the oldest star clusters based on isochrone fittings. We have constructed new stellar models and corresponding isochrones using this new solar mixture with a proper Solar calibration. We have found that the use of the Asplund et al. (2004) metallicity causes the typical ages for old globular clusters in the Milky Way to be increased roughly by 10%. Although this may appear small, it has a significant impact on the interpretation for the formation epoch of Milky Way globular clusters. The Asplund et al. (2004) abundance may not necessarily threaten the current concordance cosmology but would suggest that Milky Way globular clusters formed before the reionization epoch and before the main galaxy body starts to build up. This is in contrast to the current understanding on the galaxy formation.

Nitrogen self-enrichment in the starburst galaxies under the metal poor environments

  • Chung, Ji-Won;Sung, Eon-Chang;Rey, Soo-Chang;Kyeong, Jae-mann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.29.2-29.2
    • /
    • 2010
  • We present elemental abundances of 412 blue compact dwarf galaxies (BCDs) at z=0.2~0.5 using the Sloan Digital Sky Survey (SDSS) DR7. The gas-phase nitrogen to oxygen abundance ratios (N/O) of sample galaxies increase as the oxygen to hydrogen abundance ratios (O/H) decrease. This indicates that the nitrogen is more enriched than the oxygen. We found that there is a noticeable distinction between the merger candidates and the isolated galaxies. Merging candidates show more enrichment of nitrogen abundance compared to isolated galaxies. On the other hand, neon and oxygen abundances for merging candidates are slightly lower than the isolated systems. We discuss the main cause of these trends with internal mixing and mass loss by fast rotation of young massive stars. We also discuss the environmental effect to the relation between specific star formation rate and galaxy mass.

  • PDF

Core Formation in a Turbulent Molecular Cloud

  • Kim, Jong-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.106.2-106.2
    • /
    • 2011
  • The two competing theories of star formation are based on turbulence and ambipoar diffusion. I will first briefly explain the two theories. There have been analytical (or semi-analytic) models, which estimate star formation rates in a turbulent cloud. Most of them are based on the log-normal density PDF (probability density function) of the turbulent cloud without self-gravity. I will first show that the core (star) formation rate can be increased significantly once self-gravity of a turbulence cloud is taken into account. I will then present the evolution of molecular line profiles of HCO+ and C18O toward a dense core that is forming inside a magnetized turbulent molecular cloud. Features of the profiles can be affected more significantly by coupled velocity and abundance structures in the outer region than those in the inner dense part of the core. During the evolution of the core, the asymmetry of line profiles easily changes from blue to red, and vice versa. Finally, I will introduce a method for incorporating ambipolar diffusion in the strong coupling approximation into a multidimensional magnetohydrodynamic code.

  • PDF