• Title/Summary/Keyword: standard frameworks

Search Result 75, Processing Time 0.021 seconds

Development of component architecture to support IoT management (IoT 및 네트워크 관리 지원을 위한 컴포넌트 아키텍처 개발)

  • Seo, Hee Kyoung
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.42-49
    • /
    • 2017
  • It is important to realize automation services by communicating in IoT with humans, objects & objects, and forming a common network. People used web like the most powerful network way to sharing things and communication. Therefore the efficiency method communication between each device and the web in IoT could be different from ones. The best method for high quality software product in web applications is software reuse ; Modules, classes, patterns, frameworks, and business components are reusable elements of various perspectives. Components is plugged with others through well-defined interfaces, which can overcome the operation and complexity of application development. A web-based distributed environment for IoT applications is a standard architecture use information collected from various devices for developing and using applications. For that reason, the network management which manages the constituent resources for the best service control in IoT application is required as a sub-layer support service in most applications as well as individual applications. In this paper, we measure to develop a network management system based not only by components but on heterogeneous internetworks. For procedure this, we clarify a component architecture for classifying and classify also the component needed in the IOT and network domain or order the type of real network management system.

A Delphi Study to Validate the Patient-Centered Doctor's Competency Framework in Korea (한국의 환자 중심 의사 역량 프레임 타당화를 위한 델파이 연구 )

  • Sunju Im;Young-Jon Kim;Chanwoong Kim;Geon-Ho Lee;Sun-Woo Lee;Woo-Taek Jeon;Hanna Jung;Sojung Yune
    • Korean Medical Education Review
    • /
    • v.25 no.2
    • /
    • pp.139-158
    • /
    • 2023
  • Defining a competent doctor is important for educating and training doctors. However, competency frameworks have rarely been validated during the process of their development in Korea. The purpose of this study was to validate the patient-centered doctor's competency framework, which had been developed by our expert working group (EWG). Two rounds of Delphi questionnaire surveys were conducted among a panel of experts on medicine and medical education. The panel members were provided with six core competencies, 17 sub-competencies, and 53 enabling competencies, and were asked to rate the importance of these competencies on a 5-point Likert scale. Between April and July 2021, a total of 28 experts completed both rounds. The data of the Delphi study were analyzed for the mean, standard deviation, median, inter-rater agreement (IRA), and content validity ratio (CVR). A CVR >0.36 and IRA ≥0.75 were deemed to indicate validity and agreement. This study found that five enabling competencies were not valid, and agreement was not reached for three sub-competencies and two enabling competencies. In consideration of CVR and the individual opinions of panel members at each session, the final competencies were extracted through consensus meetings of the EWG. The competencies were modified into six core competencies, 16 sub-competencies, and 47 enabling competencies. This study is meaningful in that it proposes patient-centered doctor's competencies enabling the development of residents' milestone competencies, an assessment system, and educational programs.

A Research on RC3(RMF-CMMC Common Compliance) meta-model development in preparation for Defense Cybersecurity (국방 사이버보안을 위한 RMF-CMMC 공통규정준수 메타모델 개발방안 연구)

  • Jae-yoon Hwang;Hyuk-jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • The U.S. Department of Defense, leading global cybersecurity policies, has two main cybersecurity frameworks: the Cybersecurity Maturity Model Certification (CMMC) for external defense industry certification, and the Risk Management Framework (RMF) for internal organizational security assessments. For Republic of Korea military, starting from 2026, the Korean version of RMF (K-RMF) will be fully implemented. Domestic defense industry companies participating in projects commissioned by the U.S. Department of Defense must obtain CMMC certification by October 2025. In this paper, a new standard compliance meta-model (R3C) development methodology that can simultaneously support CMMC and RMF security audit readiness tasks is introduced, along with the implementation results of a compliance solution based on the R3C meta-model. This research is based on practical experience with the U.S. Department of Defense's cybersecurity regulations gained during the joint project by the South Korean and U.S. defense ministries' joint chiefs of staff since 2022. The developed compliance solution functions are being utilized in joint South Korean-U.S. military exercises. The compliance solution developed through this research is expected to be available for sale in the private sector and is anticipated to be highly valuable for domestic defense industry companies that need immediate CMMC certification.

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.