• Title/Summary/Keyword: standard cell

Search Result 1,451, Processing Time 0.038 seconds

The Potential Therapeutic Effects of Endothelial Progenitor Cells in Ischemic Cardiovascular Disease (허혈성 심혈관 질환의 치료제로서 혈관내피전구세포(EPC)의 가능성에 대한 고찰)

  • Kim, Da Yeon;Kim, Bo Min;Kim, So Jung;Choi, Jin Hee;Kwon, Sang-Mo
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.651-659
    • /
    • 2020
  • Cardiovascular disease is one of the leading causes of death across the world, and gold-standard treatments such as percutaneous coronary intervention and artery bypass grafting have various limitations including myocardial damage and subsequent maladaptive cardiac remodeling. To overcome this, stem-cell therapies are emerging as a promising strategy for cardiovascular regeneration. Endothelial progenitor cells (EPCs) have high potential to proliferate and differentiate into endothelial cells for vascularization and tissue regeneration, and several clinical trials have explored EPC function in tissue repair in relation to clinical safety and improving cardiac function. Consequently, EPC has been suggested as a feasible stem-cell therapy. However, autologous EPC transplantation in cardiovascular disease patients is restricted by risk factors such as age, smoking status, and hypertension that lead to reduced bioactivity in the EPCs. New approaches for improving EPC function and stem-cell efficacy have therefore been suggested, including cell priming, organoid culture systems, and enhancing transplantation efficiency through 3D bioprinting methods. In this review, we provide a comprehensive understanding of EPC characteristics, therapeutic approaches, and the current state of clinical research into EPCs as stem-cell therapy for cardiovascular disease.

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle (君臣佐使論)

  • Shin, Jeong-Hun;Jun, Seung-Lyul;Hwang, Sung-Yeoun;Ahn, Seong-Hun
    • Journal of Pharmacopuncture
    • /
    • v.15 no.4
    • /
    • pp.42-51
    • /
    • 2012
  • Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.

Operation Characteristics of Bypass Diode for PV Module (태양전지 모듈의 바이패스 다이오드 동작 특성 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Lawrence, Waithiru C.K.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • In this paper, an I-V characteristics of bypass diode has been studied by counting the shading effect in photovoltaic module. The shadow induces hot spot phenomenon in PV module due to the increase of resistance in the current path. Two different types of PV module with and without bypass diode were fabricated to expect maximum output power with an increasing shading rate of 5 % on the solar cell. Temperature distribution is also detected by shading the whole solar cell for the outdoor test. From the result, the bypass diode works properly over 60 % of shading per cell with constant output power. Maximum power generation in case of solar cell being totally shaded with bypass diode decreases 41.3 % compared with the one under STC(Standard Test Condition). On the other hand, the maximum output power of the module without bypass diode gradually decreases by showing hot spot phenomenon with the increase of shading ratio on the cell and finally indicates 95.5 % of power loss compared with the output under STC. Finally the module temperature measured increases around $10^{\circ}C$ higher than that under STC due to hot-spots which come from the condition without bypass diode. It has been therefore one of the main reasons for degrading the PV module and shortening the durability of the PV system.

Hematological values of Korean indigenous neonatal goats (한국재래산양 신생자축의 혈액학치 변화에 관한 연구)

  • Cho, Kwang-Hyun;Park, Yong-Soo;Kim, Seong-Guk;Eo, Kyung-Yeon;Kwak, Dongmi;Kwon, Oh-Deog
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • The present study was undertaken to clarify the changes in hematological values of Korean indigenous goats according to age. Blood samples were collected from 16 goats (5 females and 11 males) from birth up to the age of 6 weeks and the levels of various hematological values were analyzed. The body weight was increased from 2.54 kg at birth to 6.41 kg at 6 weeks age. The erythrocytes (RBC) counts and hemoglobin (Hb) values of goats were decreased at 2 weeks after birth, and increased gradually from 4 weeks after birth. The hematocrit (Ht) values were decreased until 4 weeks after birth, and increased at 6 weeks after birth. The mean cell volume (MCV) and mean cell hemoglobin (MCH) were decreased until 6 weeks after birth. The mean cell hemoglobin concentration (MCHC) was increased slightly from 2 weeks after birth. The red cell distribution width (RDW) was increased significantly at 2 weeks after birth, and decreased from 4 weeks after birth. The platelet (PLT) counts were increased significantly from 2 weeks after birth. The mean platelet volume (MPV) was decreased at 2 weeks after birth, and increased gradually from 4 weeks after birth. The total white blood cell (WBC) counts and the mean absolute numbers of neutrophil, lymphocyte, monocyte and eosinophil were increased from 2 weeks after birth. In conclusion, the data obtained from this study may be valuable as a standard for interpreting results of hematological analyses in Korean indigenous goats.

Design of the 1.9-GHz CMOS Ring Voltage Controlled Oscillator using VCO-gain-controlled delay cell (이득 제어 지연 단을 이용한 1.9-GHz 저 위상잡음 CMOS 링 전압 제어 발진기의 설계)

  • Han, Yun-Tack;Kim, Won;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.72-78
    • /
    • 2009
  • This paper proposes a low phase noise ring voltage controlled oscillator(VCO) with a standard $0.13{\mu}m$ CMOS process for PLL circuit using the VCO-gain-controlled Delay cell. The proposed Delay cell architecture with a active resistor using a MOS transistor. This method can reduced a VCO gain so that improve phase noise. And, Delay cell consist of Wide-Swing Cascode current mirror, Positive Latch and Symmetric load for low phase noise. The measurement results demonstrate that the phase noise is -119dBc/Hz at 1MHz offset from 1.9GHz. The VCO gain and power dissipation are 440MHz/V and 9mW, respectively.

Genetic Variation in MicroRNAs and Risk of Oral Squamous Cell Carcinoma in South Indian Population

  • Sushma, PS;Jamil, Kaiser;Kumar, P Uday;Satyanarayana, U;Ramakrishna, M;Triveni, B
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7589-7594
    • /
    • 2015
  • Background: MicroRNAs (miRNAs) are small non-coding RNA molecules, implicated in several activities like initiation, progression and prognosis of various cancers. Single nucleotide polymorphisms (SNPs) in miRNA genes can lead to alteration in mRNA expression, resulting in diverse functional consequences. The aim of our study was to investigate the association of miR-149C>T and miR-196a2C>T SNPs with susceptibility to development of oral squamous cell carcinoma (OSCC) in South Indian subjects. Materials and Methods: 100 OSCC patients and 102 healthy controls from the general population were recruited for the study. Genetic analysis was performed by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) as per a standard protocol. Results: The genotype frequencies in miR-196a2 polymorphism, of TT, CT and CC in the OSCC patients were 69%,10% and 22% respectively while for control group it was 80%, 15% and 5% respectively. The CC genotype of miR196a2 polymorphism was significantly associated with oral squamous cell carcinoma. The genotype frequencies in miR-149 polymorphisms of CC, CT and TT in the oral squamous cell carcinoma (OSCC) patients were 72%, 22% and 6% respectively and for control group 88%, 12% and 0% respectively. CT and TT genotypes of miR149 polymorphism were found to be significantly associated with OSCC (p = 0.05 and 0.07). Conclusions: Our study suggests that miR-196a2C>T and miR-149C>T polymorphisms may play crucial roles in the development of OSCC in South Indian subjects.

FBW7 Upregulation Enhances Cisplatin Cytotoxicity in Non-small Cell Lung Cancer Cells

  • Yu, Hao-Gang;Wei, Wei;Xia, Li-Hong;Han, Wei-Li;Zhao, Peng;Wu, Sheng-Jun;Li, Wei-Dong;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6321-6326
    • /
    • 2013
  • Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem. F-box/WD repeat-containing protein 7 (FBW7) is a member of the F-box protein family that regulates cell cycle progression, and cell growth and differentiation. FBW7 also functions as a tumor suppressor. Methods: We used cell viability assays, Western blotting, and immunofluorescence combined with siRNA interference or plasmid transfection to investigate the underlying mechanism of cisplatin resistance in NSCLC cells. Results: We found that FBW7 upregulation significantly increased cisplatin chemosensitivity and that cells expressing low levels of FBW7, such as NCI-H1299 cells, have a mesenchymal phenotype. Furthermore, siRNA-mediated silencing or plasmid-mediated upregulation of FBW7 resulted in altered epithelial-mesenchymal transition (EMT) patterns in NSCLC cells. These data support a role for FBW7 in regulating the EMT in NSCLC cells. Conclusion: FBW7 is a potential drug target for combating drug resistance and regulating the EMT in NSCLC cells.

Fabrication and Electrical Properties of Local Damascene FinFET Cell Array in Sub-60nm Feature Sized DRAM

  • Kim, Yong-Sung;Shin, Soo-Ho;Han, Sung-Hee;Yang, Seung-Chul;Sung, Joon-Ho;Lee, Dong-Jun;Lee, Jin-Woo;Chung, Tae-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • We fabricate local damascene FinFET cell array in sub-60nm feature sized DRAM. The local damascene structure can remove passing-gate-effects in FinFET cell array. p+ boron in-situ doped polysilicon is chosen for the gate material, and we obtain a uniform distribution of threshold voltages at around 0.7V. Sub-threshold swing of 75mV/d and extrapolated off-state leakage current of 0.03fA are obtained, which are much suppressed values against those of recessed channel array transistors. We also obtain a few times higher on-state current. Based on the improved on- and off-state current characteristics, we expect that the FinFET cell array could be a new mainstream structure in sub-60nm DRAM devices, satisfying high density, low power, and high-speed device requirements.

Establishment and Characterization of the Fibroblast Line from Silkie Bantam

  • Li, L.F.;Guan, W.J.;Li, H.;Bai, X.J.;Ma, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.492-499
    • /
    • 2009
  • A Silkie Bantam embryo fibroblast line (named SBF59 line) was successfully established by using direct explant culture and cryopreservation techniques. Cell morphology, viability, dynamic growth and contamination were tested and the karyotype and levels of isoenzymes of lactic dehydrogenase and malic dehydrogenase were analyzed. Four kinds of fluorescent protein extrogenes, including $pEGFP-N_3$, $pECFP-N_1$, $pEYFP-N_1$ and $pDsRed1-N_1$ were transfected into the cells. The results showed that the cells were healthy and possessed a fibrous structure without a change in morphology. The average viability of the cells was 96% before freezing and 90.5% after thawing. The growth curve appeared as typical "S" shape and the cell growth passed through a detention phase, a logarithmic phase and a platform phase; the estimated population doubling time (PDT) was 38.5 h; assays for the presence of bacteria, fungi, viruses and mycoplasmas were negative; the cell line showed no cross contamination when assessed by isoenzyme analysis; the chromosome number was 2n = 78 on more than 88% of occasions; four kinds of fluorescent protein extro-genes appeared to be expressed effectively with a high transfection efficiency between 18.3% and 42.3%. The cell line met the required quality control standard. It not only preserves the genetic resources of the important Silkie Bantam at the cellular level but also provides valuable materials for genomic, post-genomic, somatic cell cloning research and other applications.