• Title/Summary/Keyword: standard cell

검색결과 1,450건 처리시간 0.027초

In vitro cytotoxic evaluation of some essential oils

  • P., Vijayan;Godavarthi, Ashok;Chandrashekhar, Raghu;Badami, Shrishilappa;SA, Dhanaraj;B., Suresh
    • Advances in Traditional Medicine
    • /
    • 제3권4호
    • /
    • pp.187-190
    • /
    • 2003
  • Seven essential oils were tested for in vitro cytotoxicity against the cancerous cell lines A-549, HEp-2 and DLA and normal BRL-3A, NRK-49F and Vero cell lines using standard MTT, SRB and dye exclusion techniques. The A-549 cell line was found to be the most susceptible to all the essential oils. The essential oils of A. nilagirica, A. calamus and O. sanctum were found to be the more active against these cells with mean $CTC_{50}$ values of 17.75, 19.00 and $24.37\;{\mu}g/ml$, respectively. The essential oil of Acorus calamus was found to be the most potent with low $CTC_{50}$ values against the cancerous and comparatively higher $CTC_{50}$ values against the normal cell lines. Artemisia pellens and Pelargonium graveolens oils also showed potent activity. These oils merit further investigation to identify the active principles and nature of the anti tumor activity in animal models.

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

광 입사각에 따른 염료감응형 태양전지의 발전특성 분석 (The Characteristic Analysis of the Dye-sensitized Solar Cells as the Change of Incident Angle)

  • 서현웅;손민규;이경준;장진주;홍지태;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.124-127
    • /
    • 2008
  • Dye-sensitized solar cells (DSCs) have been proposed as a substitute for overcoming the limitation of Si solar cells because DSC has the various applications using advantages of DSC such as low cost, transparency and flexibility. Although some people point out low efficiency of DSC as the important problem at present, general views say that actually cumulative power is not insufficient as compared with Si solar cell. Therefore, we analyzed the characteristics of both cells according to the change of incident angle in this study. The insensibility about the incident angle has more developable time. Finally, DSC is able to fill a shortage of power caused from low efficiency of DSC for same time by developing during impossible time to develop in Si solar cell. As a result, DSC has 75% and 210% cumulative power of Si solar cell in summer and winter under the standard sunshine duration.

  • PDF

고분자 전해질 막 연료전지를 위한 메탄 개질기에서 형상 변화가 개질 성능에 미치는 영향에 대한 연구 (Effect of Tip Size and Aspect Ratio on Reforming Performance in a Methane Reformer for Polymer Electrolyte Membrane Fuel Cell (PEMFC))

  • 서동균;노인규;황정호;최종균;신동훈;김형식
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.364-374
    • /
    • 2010
  • Design of a reformer consisting of combustion chamber and reforming chamber was investigated for a 1 kW and a 5 kW polymer electrolyte membrane fuel cell (PEMFC), respectively, using the computational fluid dynamics (CFD). First, the 1kW reformer was considered to obtain the reliability of the numerical study. It was modeled, calculated and compared with experimental data. Second, the 5kW reformer was considered for a geometric study. Three tip sizes (35, 40, and 45 mm) and five aspect ratios was selected. It was found that the optimum was at tip sizes of 40 and 45 mm, at aspect ratios of -10% and -20% of the standard length.

Food waste treatment using Bacillus species isolated from food wastes and production of air-dried Bacillus cell starters

  • An, Byungryul;Park, Mi-Kyung;Oh, Jun-Hyun
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.258-264
    • /
    • 2018
  • The objectives of this research were to 1) isolate and identify thermophilic bacteria for food waste treatment; 2) investigate the capability of food waste treatment using Bacillus species; and 3) develop air-dried Bacillus starters for food waste treatment. Five Bacillus species were isolated from food wastes and identified as Bacillus licheniformis (B. licheniformis) G1, Bacillus circulans C2, Bacillus subtilis (B. subtilis) E1, Bacillus vanillea F1, and Bacillus atrophaeus G2 based on 16S rDNA sequencing. Each identified Bacillus and the mixture of Bacillus species were cultivated in the standard food waste at $45^{\circ}C$ for 8 d. Changes in cell count, solid contents, and pH of the food waste were monitored during cultivation. Air-dried Bacillus cell powders were prepared using wheat flour and lactomil as excipients, and the cell count and survival rate were determined. The cell count of B. licheniformis G1 exhibited the highest number among the tested Bacillus (${\sim}10^8CFU/mL$). The greatest reduction in solid contents of food waste was achieved by B. subtilis E1 (22.6%). The mixture of B. licheniformis G1 and B. subtilis E1 exhibited a synergistic effect on the reduction of solid contents. Lactomil was determined as better excipient than wheat flour based on the greatest survival rate of 95%.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

실리콘 태양전지 응용을 위한 황 결핍 n형 MoS2 층 연구 (Sulfur Defect-induced n-type MoS2 Thin Films for Silicon Solar Cell Applications)

  • 이인승;김근주
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.46-51
    • /
    • 2023
  • We investigated the MoS2 thin film layer by thermolytic deposition and applied it to the silicon solar cells. MoS2 thin films were made by two methods of dipping and spin coating of (NH4)2MoS4 precursor solution. We implemented two types of substrates of microtextured and nano-microtextured 6-in. Si pn junction wafers. The fabricated MoS2 thin film layer was analyzed, and solar cells were fabricated by applying the standard silicon solar cell process. The MoS2 thin film layer of sulfur-deficient form was deposited on the n-type emitter layer, and electrons, which are minority carriers, were well transported at the interface and exhibited photovoltaic solar cell characteristics. The cell efficiencies were achieved at 5% for microtextured wafers and 2.56% for nano-microtextured wafers.

  • PDF

터보팬 및 터보샤프트 엔진 시운전실 Correlation 시험 절차 비교와 분석에 관한 연구 (A Study on Comparison and Analysis of Correlation Test Procedure for a Turbofan and Turboshaft Engine Test Cell)

  • 권주현;고강명
    • 항공우주시스템공학회지
    • /
    • 제18권1호
    • /
    • pp.46-52
    • /
    • 2024
  • 엔진 시운전실은 엔진의 성능 및 운용 특성 요구도를 적절하게 검증할 수 있도록 통제된 시험 환경을 제공해야 한다. 하지만 시운전 설비마다 구조 및 특성이 완전히 같을 수는 없기 때문에, 신규 시운전실은 기준 시운전실과의 Correlation 시험을 통해 시험 결과의 신뢰성을 검증하고 차이점을 보정하는 과정이 필요하다. 본 논문에서는 터보팬과 터보샤프트 엔진의 공통점과 차이점을 바탕으로 Correlation 시험을 수행할 때 고려사항들을 연구하였으며, 경험에 따른 Correlation 시험 절차의 예시를 제시하였다. 향후 본 연구가 엔진 종류에 따른 시험 설비의 인증 표준을 설정하는 것에 도움을 줄 것으로 기대한다.

Power Control and Ground Fault Simulations for a Distribution System with a Fuel Cell Power Plant

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • 조명전기설비학회논문지
    • /
    • 제24권7호
    • /
    • pp.9-19
    • /
    • 2010
  • Fuel cell (FC) distributed generation (DG) is gradually becoming more attractive to mainstream electricity users as capacity improves and costs decrease. New technologies including inverters are becoming available to provide a uniform standard interconnection of DGs with an electric power system. Some of the operating conflicts and the effect of DG on power quality are addressed and investigated through simulations on a real distribution network with an FC power plant. The results of these simulations have proved load tracking capability following the real and reactive power change of the load and have shown the flow of overcurrent from an FC power plant during the ground fault of a distribution line.