• Title/Summary/Keyword: standard approach method

Search Result 820, Processing Time 0.023 seconds

Postprocessing Algorithm for Reduction of Blocking Artifact in Still Images (정지영상의 Blocking Artifact를 제거하기 위한 후처리 알고리즘)

  • 장동식;유헌우;손용준;채경호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.462-467
    • /
    • 2002
  • A new approach for reducing the blocking artifact is proposed in this paper. This method can be applied to conventional transform coding, without introducing additional information or significant blurring. Main drawbacks of the Discrete Cosine Transform(DCT) are visible block boundaries due to coarse quantization of the coefficients. Therefore, restoration techniques result in unnecessary blurring of the image. The proposed deblocking algorithm is based on the heuristic approach for edge detection. All edges of the standard still images are categorized, and the best edges are selected. Several images are used fer experiments, and several other previous algorithms are compared with the proposed approach. The results show that the proposed algorithm works better than those of other previous researches. This algorithm can be used for JPEG, MPEG, and H.261 standard images.

Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems (다층분석법을 이용한 대규모 파라미터 설계 최적화)

  • Kim, Young-Jin
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.

A Level II reliability approach to rock slope stability (암반사면 안정성에 대한 Level II 신뢰성 해석 연구)

  • Park, Hyuck-Jin;Kim, Jong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.319-326
    • /
    • 2004
  • Uncertainty is inevitably involved in rock slope engineering since the rock masses are formed by natural process and subsequently the geotechnical characteristics of rock masses cannot be exactly obtained. Therefore the reliability analysis method has been suggested to deal properly with uncertainty. The reliability analysis method can be divided into level I, II and III on the basis of the approach for consideration of random variable and probability density function of reliability function. The level II approach, which is focused in this study, assumes the probability density function of random variables as normal distribution and evaluates the probability of failure with statistical moments such as mean and standard deviation. This method has the advantage that can be used the problem which the Monte Carlo simulation approach cannot be applied since the complete information on the random variables are not available. In this study, the analysis results of level II reliability approach compared with the analysis results of level III approach to verify the appropriateness of the level II approach. In addition, the results are compared with the results of the deterministic analysis.

  • PDF

On a Method to Analyze and Verify the Functional Safety of ISO 26262 Based on Systems Engineering Framework (기능안전규격 ISO 26262의 효과적 구현을 위한 시스템공학 기반 요구사항 분석/검증 방법)

  • Lim, Gwan-Taik;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.61-69
    • /
    • 2013
  • According to ISO 26262 (the international standard on functional safety for automotive industry), the functional safety should be considered during the whole automotive systems life cycle from the design phase throughout the production phase. In order to satisfy the standard, the automotive and related industry needs to take appropriate actions while carrying out a variety of development activities. This paper presents an approach to coping with the standard. Analyzing the standard indicates that the safety issues of the automotive systems should be handled with a system's view whereas the conventional approach to solving the issues has been practiced with focus on the component's level. The aforementioned system's view implies that the functional safety shall be incorporated in the system design from both the system's life-cycle view and the hierarchical view for the structure. In light of this, the systems engineering framework can be quite appropriate in the functional safety development and thus has been taken in this paper as a problem solving approach. Of various design issues, the analysis and verification of the safety requirements for functional safety is a key study subject of the paper. Note, in particular, that the conventional FMEA (failure mode effects analysis) and FTA (fault tree analysis) methods seem to be partly relying on the insufficient experience and knowledge of the engineers. To improve this, a systematic method is studied here and the result is applied in the design of an ABS braking system as a case study.

A Study on the Deterministic Evaluation Method of R&D Project in Food Industry (식품산업 연구개발의 결정론적 평가방법에 관한 연구)

  • 이종만;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.57-64
    • /
    • 1991
  • The preliminary, advanced and final evaluation of R&D project is essential in order to reduce loss of resource and opportunity and to minimize uncertainty resulting from optimal selection and efficient progress of R&D project. This thesis examined characteristics of deterministic evaluation, economical evaluation, and OR-approach evaluation as theoretical methodology of evaluation of R&D project applicable to food industry in Korea by using scoring method, one of deterministic evaluations. In addition, this thesis divided the evaluation factors for preliminary evaluation of R&D project into 5 groups and 30 factors on basis of the environment of domestic companies and set up the standard of each evaluation factors and contains marking-selecting way. But, generally, the evaluation model by this thesis, as the conditions of the business company environment are different to each other, contents to be set up evaluation factors, evaluation standard and decision method conforming to each the environment of the business companies with referring to as one standard of evaluation project for selecting R&D project.

  • PDF

Accurate Measurement of Arsenic in Laver by Gravimetric Standard Addition Method Combined with High Resolution Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Hyeon-Ji;Yim, Yong-Hyeon;Kim, Jeongkwon;Hwang, Euijin
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • A gravimetric standard addition method combined with internal standard calibration has been successfully developed for the accurate analysis of total arsenic in a laver candidate reference material. A model equation for the gravimetric standard addition approach using an internal standard was derived to determine arsenic content in samples. Handlings of samples, As standard and internal standard were carried out gravimetrically to avoid larger uncertainty and variability involved in the volumetric preparation. Germanium was selected as the internal standard because of its close mass to the arsenic to minimize mass-dependent bias in mass spectrometer. The ion signal ratios of $^{75}As^+$ to $^{72}Ge^+$ (or $^{73}Ge^+$) were measured in high resolution mode ($R{\geq}10,000$) to separate potential isobaric interferences by high resolution ICP/MS. For method validation, the developed method was applied to the analysis of arsenic content in the NMIJ 7402-a codfish certified reference material (CRM) and the result was $37.07mg{\cdot}kg^{-1}{\pm}0.45mg{\cdot}kg^{-1}$ which is in good agreement with the certified value, $36.7mg{\cdot}kg^{-1}{\pm}1.8mg{\cdot}kg^{-1}$. Finally, the certified value of the total arsenic in the candidate laver CRM was determined to be $47.15mg{\cdot}kg^{-1}{\pm}1.32mg{\cdot}kg^{-1}$ (k = 2.8 for 95% confidence level) which is an excellent result for arsenic measurement with only 2.8 % of relative expanded uncertainty.

Matrix-based Chebyshev spectral approach to dynamic analysis of non-uniform Timoshenko beams

  • Wang, W.Y.;Liao, J.Y.;Hourng, L.W.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.669-682
    • /
    • 2011
  • A Chebyshev spectral method (CSM) for the dynamic analysis of non-uniform Timoshenko beams under various boundary conditions and concentrated masses at their ends is proposed. The matrix-based Chebyshev spectral approach was used to construct the spectral differentiation matrix of the governing differential operator and its boundary conditions. A matrix condensation approach is crucially presented to impose boundary conditions involving the homogeneous Cauchy conditions and boundary conditions containing eigenvalues. By taking advantage of the standard powerful algorithms for solving matrix eigenvalue and generalized eigenvalue problems that are embodied in the MATLAB commands, chebfun and eigs, the modal parameters of non-uniform Timoshenko beams under various boundary conditions can be obtained from the eigensolutions of the corresponding linear differential operators. Some numerical examples are presented to compare the results herein with those obtained elsewhere, and to illustrate the accuracy and effectiveness of this method.

A new Bayesian approach to derive Paris' law parameters from S-N curve data

  • Prabhu, Sreehari Ramachandra;Lee, Young-Joo;Park, Yeun Chul
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.361-369
    • /
    • 2019
  • The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.

A Posterior Preference Articulation Method to Dual-Response Surface Optimization: Selection of the Most Preferred Solution Using TOPSIS (쌍대반응표면최적화를 위한 사후선호도반영법: TOPSIS를 활용한 최고선호해 선택)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Response surface methodology (RSM) is one of popular tools to support a systematic improvement of quality of design in the product and process development stages. It consists of statistical modeling and optimization tools. RSM can be viewed as a knowledge management tool in that it systemizes knowledge about a manufacturing process through a big data analysis on products and processes. The conventional RSM aims to optimize the mean of a response, whereas dual-response surface optimization (DRSO), a special case of RSM, considers not only the mean of a response but also its variability or standard deviation for optimization. Recently, a posterior preference articulation approach receives attention in the DRSO literature. The posterior approach first seeks all (or most) of the nondominated solutions with no articulation of a decision maker (DM)'s preference. The DM then selects the best one from the set of nondominated solutions a posteriori. This method has a strength that the DM can understand the trade-off between the mean and standard deviation well by looking around the nondominated solutions. A posterior method has been proposed for DRSO. It employs an interval selection strategy for the selection step. This strategy has a limitation increasing inefficiency and complexity due to too many iterations when handling a great number (e.g., thousands ~ tens of thousands) of nondominated solutions. In this paper, a TOPSIS-based method is proposed to support a simple and efficient selection of the most preferred solution. The proposed method is illustrated through a typical DRSO problem and compared with the existing posterior method.

Magnetic Field Computations of the Magnetic Circuits with Permanent Magnets by Infinite Element Method (무한요소법을 이용한 영구자석 자기회로의 자장해석)

  • 한송엽;정현규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.10
    • /
    • pp.379-383
    • /
    • 1985
  • A method employing infinite elements is described for the magnetic field computations of the magnetic circuits with permanent magnet. The system stiffness matrix is derived by a variational approach, while the interfacial boundary conditions between the finite element regions and the infinite element regions are dealt with using collocation method. The proposed method is applied to a simple linear problems, and the numerical results are compared with those of the standard finite element method and the analytic solutions. It is observed that the proposed method gives more accurate results than those of the standard finite element method under the same computing efforts.

  • PDF