• Title/Summary/Keyword: stand yield model

Search Result 37, Processing Time 0.025 seconds

Assessment and Prediction of Stand Yield in Cryptomeria japonica Stands (삼나무 임분수확량 평가 및 예측)

  • Son, Yeong Mo;Kang, Jin Taek;Hwang, Jeong Sun;Park, Hyun;Lee, Kang Su
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.421-426
    • /
    • 2015
  • The objective of this paper is to look into the growth of Cryptomeria japonica stand in South Korea along with the evaluation on their yields, followed by their carbon stocks and removals. A total of 106 sample plots were selected from Jeonnam, Gyeongnam, and Jeju, where the groups of standard are grown. We only used 92 plots data except outlier. As part of the analysis, the Weibull diameter distribution was applied. In order to estimate the diameter distribution, the growth estimation equation for each of the growth factors including the height, the diameter at breast height, and the basal area was drafted out and the verification for each equation was examined. The site index for figuring out the forest productivity of Cryptomeria japonica stand for each district was also developed as a Schumacher model and 30yr was used as a reference age for the estimation of the site index. It was found that the site index for Cryptomeria japonica stand in South Korea ranges from 10 to 16 and this result was used as a standard for developing the stand yield table. According to the site 14 in the stand yield table, the mean annual increment (MAI) of the Cryptomeria japonica reaches $7.6m^3/ha$ on its 25yr and its growing stock is estimated to be at $190.1m^3/ha$. This volume is about $20m^3$ as high as that of the Chamaesyparis obtusa. Furthermore, the annual carbon absorptions for a Cryptomeria japonica stand reached the peak at 25yr, which is 2.14 tC/ha/yr, $7.83tCO_2/ha/yr$. When compared to the other conifers, this rate is slightly higher than that of a Chamaecyparis obtusa ($7.5tCO_2/ha/yr$) but lower than that of the Pinus koraiensis ($10.4tCO_2/ha/yr$) and Larix kaempferi ($11.2tCO_2/ha/yr$). With such research result as a base, it is necessary to come up with the ways to enhance the utilization of Cryptomeria japonica as timbers, besides making use of their growth data.

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture

  • Ogana, Friday Nwabueze;Chukwu, Onyekachi;Ajayi, Samuel
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson's SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

Stand Density Management Studies on Pine Stands in Korea (I) - The Simple Logistic Growth Curve and Its Application to Pine Stands - (소나무림(林)의 밀도관리(密度管理)에 관(關)한 연구(硏究)(I) - 단순(單純) logistic 곡선(曲線)과 소나무림(林)에 대한 그의 적용(適用) -)

  • Kwon, O Bok;Lee, Heung Kyun;Woo, Chong Chun
    • Journal of Korean Society of Forest Science
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 1982
  • The simple logistic growth model on the logistic curve, being originally a kind of population growth curve has also been sometimes utilized to describe growth curves in herbaceous plants such as duckweed and sun-flowers. It has already been recognized that the agreement between the theoretical calculations and the empirical observations is quite satisfactory form a practical point of view. It remains, however, still doubtful whether the logistic curve could be applied to the growth or ordinary woody plants which is quite different in its character from that of herbaceous plants. In this study, the simple logistic model, being a basic tool of stand density management, is applied to yield data from pine stands in order to test the adequacy of the model An attempt of testing the significance of the fit is made by applying the Chi-square test.

  • PDF

A Study on Thinning Planning of Pinus koraiensis Stand(I) (잣나무 인공림(人工林)의 간벌계획(間伐計劃)에 관한 연구(硏究)(I))

  • Choi, In-Hwa;Seo, Ok-Ha
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.66-80
    • /
    • 1997
  • Pinus koraiensis is one of the major speciese which have been recently planted for ten years and consists of 31% of total plantation. Presently young stand less than 30 years consists of 87% of total forest, but tending thinning of it is hardly carried out and the desirable direction for the thinning is not established yet. The objective of the study is to introduce the optimum thinning plan and thinning method through the long-run experiment of tending thinning for the Pinus koraiensis stand. The experiments carry out to interprete its growth model on the subject of two thinning experimental plots and yield table of Pinus koraiensis. As the basic step for understanding the thinning process, a theoretical growth model which is suitable to express the growth process is required. For that purpose, three growth functions (Mitscherlich, 4 parameter Richards, 3 parameter Richards) are applied to the diameter growth of the sample trees which are taken in the two plots. The results show that 3 parameter Richards is the most suitable. It is also verified that the diameter growth, the height growth, and the decrease in the number of stocks can be estimated by this function. To estimate the growth change of single tree, growth model including parameter h which is related to the occupation area of single tree are introduced. The parameter h can be estimated by using the data of the diameter growth obtained from the established experimental plots. Therefore, if both verification and modification of the usefulness of the model suggested is made, equations which tell about the thinning effects could be drived by estimating the growth process of single tree in advance.

  • PDF

Development and Validation of the Stand Density Management Diagram for Pinus densiflora Forests in Korea (소나무 임분밀도관리도 작성 및 실용성 검정)

  • Park, Joon Hyung;Lee, Kwang Soo;Yoo, Byung Oh;Park, Yong Bae;Jung, Su Young
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.342-350
    • /
    • 2016
  • This study aims to make the stand density management diagram which is very useful for establishing systematic management plan and obtaining management goal in Pinus densiflora forest. To estimate 5 models mainly composed of stand density management diagram, we used total of 1,886 sample plots having more than 75% of the total basal area of the pine trees in each stand. To test the goodness of fit, $X^2$ was computed with a significance level of 5%, and the acceptable error range as 20%. Also standard deviation of the model was $34.59m^3{\cdot}ha^{-1}$, minimum acceptable error range was 16.59% and coefficient of variation was 22.11%. If we use the stand density management diagram, it would be useful to establish the timber yield and thinning plan understanding the pathway of stand density management.

Development of Site Index Model for Cryptomeria japonica Stands by the Current Growth Characteristics in South Korea (현실임분 생장특성을 반영한 삼나무 지위지수 추정 모델 개발)

  • Kim, Hyun-Soo;Jung, Su-Young;Lee, Kwang-Soo;Lee, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.793-801
    • /
    • 2022
  • This study was carried out to provide basic data for logical forest management by developing a site index curve reflecting the current growth characteristics of Cryptomeria japonica stands in Korea. The height growth model was developed using the Chapman-Richards, Schumacher, Gompertz, and Weibull algebraic difference equations, which are widely used in growth estimation, for data collected from 119 plots through the 7th National Forest Inventory and stand survey. The Chapman-Richards equation, with the highest model fit, was selected as the best equation for the height growth model, and a site index curve was developed using the guide curve method. To compare the developed site index curve with that on the yield table, paired T-tests with a significance level of 5% were performed. The results indicated that there were no significant differences between the site index curve values at all ages, and the p-value was smaller after the reference age than before. Therefore, the site index curve developed through this study reflects the characteristics of the changing growth environment of C. japonica stands and can be used in accordance with the site index curve on the current yield table. Thus, this information can be considered valuable as basic data for reasonable forest management.

Structure Analysis on Thermal Deformation of Super Low Temperature Liquefied Gas One-module Vaporizer (초저온 액화가스 단일 모듈 기화기의 열변형 구조해석)

  • Park, G.T.;Lee, Y.H.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.22-28
    • /
    • 2007
  • Liquefied gas vaporizer is a machine to vaporize liquefied gas such as liquid nitrogen($LN_{2}$), liquefied natural gas(LNG), liquid oxygen($LO_{2}$) etc. For the air type vaporizer, the frozen dew is created by temperature drop (below 273 K) on vaporizer surface. The layer of ice make a contractions on vaporizer. The structure analysis on the heat transfer was studied to see the effect of geometric parameters of the vaporizer, which are length 1000 mm of various type vaporizer. Structure analysis result such as temperature variation, thermal stress and thermal strain have high efficiency of heat emission as increase of thermal conductivity. As the result, Frist, With-fin model shows high temperature distribution better than without-fin on the temperature analysis. Second, Without-fin model shows double contractions better then with-fin model under the super low temperature load on the thermal strain analysis. Third, Vaporizer fin can be apply not only heat exchange but also a stiffener of structure. Finally, we confirm that All model vaporizer can be stand for sudden load change because of compressive yield stress shows within 280 MPa on thermal stress analysis.

  • PDF

The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling (열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구)

  • Jeon, J.B.;Lee, K.H.;Han, J.G.;Jung, J.W.;Kim, H.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.

Stand Structure, Volume, and Biomass Production of 9-year-old Alnus hirsuta var. sibirica grown in Minirotation (물갬나무 9년생(年生)의 임분구조(林分構造)와 재적(材積) 및 Biomass 생산(生産)에 관(關)한 연구(硏究))

  • Oh, Jeong Soo;Kim, Jong Won;Jeong, Yong Ho;Oh, Min Yung;Park, Sung Kul;Kim, Suk Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.54-59
    • /
    • 1984
  • Research was conducted in a minirotation plantation with four different planting densities at Tatae-ri, Chongwoon-myon, Yangpyong-gun, Kyonggi-do, to investigate the relation between volume and biomass production. Nine-year-old Alnus hirsuta var. sibirica analyzed to determine volume yield and weight equations for aboveground parts. The results suggest that the most suitable harvesting or thinning period at highly dense plots, more than 6,000 trees per hectare, is five years after planting, and the most fitted regression equation model for estimating aboveground biomass or total tree biomass is $logY=b_0+b_1logd^2h$.

  • PDF

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.