• Title/Summary/Keyword: stainless steel structures

Search Result 212, Processing Time 0.03 seconds

Ball-milling Induced Changes in the Crystallinity of Quartz and Wear of Milling Media (볼 밀링에 의한 석영의 결정도 변화와 밀링 매체의 마모의 영향)

  • Jin Jung Kweon;Hoon Khim;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • Quartz (SiO2) is among the major rock-forming minerals in the earth's crust. The atomistic structures of SiO2 may evolve during diverse frictional processes. The reduction of friction of quartz-rock accompanied by its amorphization, hydration, and formation of silica gel provides mineralogical insights into earthquakes and related phenomena. Ball milling, together with rotary shear experiments have been useful to infer the atomic origins of such processes. In this study, optimal experimental conditions for ball milling for amorphization of SiO2 were determined by taking into account various process variables. The crystallinity of SiO2 gradually decreased and became amorphous as the ball milling time increased at a high milling speed. The degree of wear of the milling media and its effect on the amorphization of SiO2 were analyzed using distinct milling materials (zirconia, stainless steel). The amount of ball wear increased with increasing milling time. Furthermore, the worn stainless steel particles from balls tend to interact with amorphized SiO2 to form Si-O-Cr. These results aid in understanding the process of atomistic structural changes caused by ball milling of divserse materials with relatively high hardness, such as SiO2, and understanding various geological friction processes.

Acoustic Band Structures in Two-dimensional Phononic Crystals with a Square Lattice in Water (수중에서 정방형 격자를 갖는 2차원 포노닉 크리스탈의 음향 밴드 구조)

  • Kim, Yoon Mi;Lee, Kang Il;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.335-342
    • /
    • 2015
  • Phononic crystals are composite materials consisting of a periodic arrangement of scattering inclusions in a host material. One of the most important properties of phononic crystals is the existence of band gaps, i.e., ranges of frequencies at which acoustic waves cannot propagate through the structure. The present study aims to investigate theoretically and experimentally the acoustic band structures in two-dimensional (2D) phononic crystals consisting of periodic square arrays of stainless steel solid cylinders with a diameter of 1 mm and a lattice constant of 1.5 mm in water. The theoretical dispersion relation that depicts the relationship between the frequency and the wave vector was calculated along the ${\Gamma}X$ direction of the first Brillouin zone using the finite element method to predict the band structures in the 2D phononic crystals. The transmission and the reflection coefficients were measured in the 2D phononic crystals with 1, 3, 5, 7, and 9 layers of stainless steel cylinders stacked in the perpendicular direction to propagation at normal incidence. The theoretical dispersion relation exhibited five band gaps at frequencies below 2 MHz, the first gap appearing around a frequency of 0.5 MHz. The location and the width of the band gaps experimentally observed in the transmission and the reflection coefficients appeared to coincide well with those determined from the theoretical dispersion relation.

Effect of local wall thinning on ratcheting behavior of pressurized 90° elbow pipe under reversed bending using finite element analysis

  • Chen, Xiaohui;Chen, Xu
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.931-950
    • /
    • 2016
  • Ratcheting deformation of pressurized Z2CND18.12N stainless steel $90^{\circ}$ elbow pipe with local wall thinning subjected to constant internal pressure and reversed bending was studied using finite element analysis. Chen-Jiao-Kim (CJK) kinematic hardening model, which was used to simulate ratcheting behavior of pressurized $90^{\circ}$ elbow pipe with local wall thinning at extrados, flanks and intrados, was implemented into finite element software ANSYS. The local wall thinning was located at extrados, flanks and intrados of $90^{\circ}$ elbow pipe, whose geometry was rectangular cross-section. The effect of depth, axial length and circumferential angle of local wall thinning at extrados, flanks and intrados on the ratcheting behaviors of $90^{\circ}$ elbow pipe were studied in this paper. Three-dimensional elastic-plastic analysis with Chen-Jiao-Kim (CJK) kinematic hardening model was carried out to evaluate structural ratcheting behaviors. The results indicated that ratcheting strain was generated mainly along the hoop direction, while axial ratcheting strain was relatively small.

Construction Method and Control System of the Heat of Hydration for Inchon International Airport Elevated Road Way (인천국제공항 여객터미널 전면 고가 교량 공사 시공방법 및 수화열 대책)

  • 임채만;박명웅;조용기;조선규;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.869-881
    • /
    • 1999
  • Inchon International Airport Elevated Road Way is located between the Passenger Terminal Building and Transportaion Center which are Inchon International Airport core construction projects. The deck of the bridge is consists of 5-span or 6-span continuous pre-stressed concrete slab. Steel form has been used to enhance the quality of texture on concrete slab. Steel form has been used to enhance the quality of texture on concrete surface, lower surface of deck slab with the two way arch has been manufactured by highly professional manner in order to get an beautiful exterior architectural looks. The prestressed concrete deck slab is mass concrete structures with a high-specified concrete strength and a varying section in the range of 0.95-2.8m thickness. Therefore high risks of thermal cracking occurrence by heat of hydration highly are expected. To resolve such problem, we adopted type 1 cement and pipe cooking method at construction site through mass concrete specimen test and 3-dimensional analysis. For Pipe cooling we used 25mm diameter stainless pipes with wrinkles. Cooling pipe with spacing 50-60cm has been installed. And continuous pipe cooling with cooling water of 15$^{\circ}C$ was conducted for 2days. In present 8 span of all 29 spans construction has been completed. No thermal cracking heat hydration has been observed yet.

  • PDF

Ad-hoc vibration monitoring system for a stress-ribbon footbridge: from design to operation

  • Iban, Norberto;Soria, Jose M.;Magdaleno, Alvaro;Casado, Carlos;Diaz, Ivan M.;Lorenzana, Antolin
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.13-25
    • /
    • 2018
  • Pedro $G{\acute{o}}mez$ Bosque footbridge is a slender and lightweight structure that creates a pedestrian link over the Pisuerga River, Valladolid, Spain. This footbridge is a singular stress ribbon structure with one span of 85 m consisting on a steel plate and precast concrete slabs laying on it. Rubber pavement and a railing made of stainless steel and glass complete the footbridge. Because of its lively dynamics, prone to oscillate, a simple and affordable structural health monitoring system was installed in order to continuously evaluate its structural serviceability and to estimate its modal parameters. Once certain problems (conditioning and 3D orientation of the triaxial accelerometers) are overcome, the monitoring system is validated by comparison with a general purpose laboratory portable analyzer. Representative data is presented, including acceleration magnitudes and modal estimates. The evolution of these parameters has been analysed over one-year time.

Development of Temperature and Strain-Rate Dependent Unified Constitutive Equation for Ships and Offshore Structures (선박 및 해양구조물용 극저온 재료의 온도 및 변형률 속도 의존 통합 구성방정식 개발)

  • Park, Woong-Sup;Kim, Jeong-Hyeon;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.200-206
    • /
    • 2011
  • The mechanical properties of the most widely used cryogenic materials, i.e. austenitic stainless steel (ASS), aluminum alloy and invar steel, strongly depend on temperatures and strain rates. These phenomena show very complicated non-linear behaviors and cannot be expressed by general constitutive equation. In this study, an unified constitutive equation was proposed to represent the effect of temperature and strain rate on the materials. The proposed constitutive equation has been based on Tomita/Iwamoto and Bodner/Partom model for the expression of 2nd hardening due to martensite phase transformation of ASS. To simulate ductile fracture, modified Bodner/Chan damage model was additionally applied to the model and the model validity was verified by comparison of experimental and simulation results.

Deposition and evaluation of MoNx films deposited by magnetron sputtering

  • Ma, Yajun;Li, Shenghua;Jin, Yuansheng;Pan, Guoshun;Wang, Yucong;Tung, Simon C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.135-136
    • /
    • 2002
  • Molybdenum Nitrided (MoNx) films were deposited by DC planar magnetron sputtering. Silicon wafers and real nitrided stainless steel piston rings are employed as substrates. 12 different combinations of nitrogen and argon partial pressure, from 1:7 to 7:1, were applied to deposit MoNx films. X-ray diffraction (XRD) was used to determine the phase structures of films. When nitrogen vs. argon partial pressure is 1:7, the film is mainly $Mo_2N$ phase. With increase of nitrogen partial pressure, MoN phase emerges, but $Mo_2N$ phase still exists. Composition analysis with atomic emission spectrometry (AES) also agreed with this. The films have very high nanohardness (max 2400Hv) and good adhesion to the substrates.

  • PDF

A Study on the characteristics of crack propagation in stainless steel wellding zone by AE Method (SUS 강판 용접부의 AE 방법에 의한 피로파괴전파 특성에 대한 연구)

  • 신근하;김용수
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.50-55
    • /
    • 1991
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, cracd geometry and mechanical properties. It seems to be very important to investihate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their intehrity. In this experimental research, fracture behaviors of moterials were investigated by using Acoustic Emission(AE) technique. The fracturing processes of materials were estimated through both the tension specimens. For the detrmlnatlon of yied strength or fracture toughness, the critical applied load at the crack initiation and propagation is thought to be very important. The critical applied load(PQ) was determined through AE signal. The source of AE signal was estimated by fractography analysis. These experimental results may contribute to the safety analyses and the evaluation of strength of structures.

  • PDF

Residual Stress Measurement on Welded Specimen by Neutron Diffraction (중성자 회절을 이용한 용접부위의 잔류응력 측정)

  • 박만진;장동영;최희동
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.50-58
    • /
    • 2002
  • Residual stress is generated in the structures as a result of irregular elastic-plastic deformation during fabrication processes such as welding, heat treatment, and mechanical processing. There are several factors attributed to the origin of residual stresses, tensile or compressive. The stresses can be determined by destructive ways or nondestructive ways using X-ray or neutron diffraction. Although X-ray diffraction is a well established technique, it is practically limited to near-surface stresses. Neutrons penetrate easily into most materials and neutron diffraction permits non-destructive evaluation of lattice strain within the bulk of large specimens because the radiation is more deeply penetrating for metallic engineering components. This paper presented application of neutron diffraction technique to the residual stress measurement using 20 mm thick welded stainless steel plate($100{\times}100 \textrm{mm}^2$)

Residual Stress Measurement on Welded Specimen by Neutron Diffraction (중성자 회절을 이용한 용접부위의 잔류응력 측정)

  • ;;;;;;Vyacheslav T. Em
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.90-93
    • /
    • 2000
  • Residual stress is generated in the structures as a result of irregular elastic-plastic deformation during fabrication processes such as welding, heat treatment, and mechanical processing. There are several factors attributed to the origin of residual stresses, tensile or compressive. The stresses can be determined by destructive ways or nondestructive ways by using X-ray or neutron diffraction. This paper presented application of neutron diffraction technique to the residual stress measurement using 20 mm thick welded stainless steel plate(100$\times$100 $\textrm{mm}^2$)

  • PDF