• Title/Summary/Keyword: stacking condition

Search Result 98, Processing Time 0.023 seconds

Reducing the Thrust Ripple Generated by the Stacking of Stator Phase Windings of a Linear Pulse Motor (리니어 펄스모터의 고정자 상권선 적층에 따른 추력 리플 저감 기법 연구)

  • Choi, Jaehuyk;Zun, Chanyong;Mok, Hyungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.447-452
    • /
    • 2017
  • The stator phase winding of a linear pulse motor, which is a new type of linear motor, is comprised of two phases and is structurally characterized by a stacking method in which the winding of one phase is laid on top of the winding of another phase. Such a structural characteristic induces a difference in the flux linkage resulting from the flux of each stator phase winding in the same condition. The difference in the induced flux linkage acts as a kind of thrust ripple component in terms of the generated thrust. Thus, in order to maintain consistent thrust force, a method is required to solve the problem caused by the structural singularity. Hence, in this study, we present a technique for reducing the thrust force ripple generated by the stacking of the stator phase windings of a linear pulse motor through the generation of a compensating current reference value of the current controller in order to keep the torque constant. The proposed compensating algorithm is validated by simulations and experimental results.

Buckling and Vibration of Laminated Composite Non-Circular Cylindrical Shells (비원형 단면을 가진 적층복합재료원통셸의 좌굴 및 진동해석)

  • 이영신;안상균;이우식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.807-819
    • /
    • 1989
  • Buckling and vibration of laminated non-circular cylindrical shells with constant thickness and simply supported boundary condition is considered. Governing equations are derived based on the Donnell and Flugge shell theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others. Variations of frequency parameter and buckling load parameter on the change of stacking angle, eccentricity parameter and shell theories are investigated. Conclusion of this study is as follows: (1) General solutions of buckling and vibration of laminated non-circular cylindrical shell are obtained. (2) Frequency parameter is decreased as the initial axial load is increased. (3) In general, frequency and buckling load parameter of laminated non-circular cylindrical shells are decreased as increasing of eccentricity parameter and stacking angle.

FE-SEM Image Analysis of Junction Interface of Cu Direct Bonding for Semiconductor 3D Chip Stacking

  • Byun, Jaeduk;Hyun, June Won
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.207-212
    • /
    • 2021
  • The mechanical and electrical characteristics can be improved in 3D stacked IC technology which can accomplish the ultra-high integration by stacking more semiconductor chips within the limited package area through the Cu direct bonding method minimizing the performance degradation to the bonding surface to the inorganic compound or the oxide film etc. The surface was treated in a ultrasonic washer using a diamond abrasive to remove other component substances from the prepared cast plate substrate surface. FE-SEM was used to analyze the bonding characteristics of the bonded copper substrates, and the cross section of the bonded Cu conjugates at the sintering junction temperature of 100 ℃, 150 ℃, 200 ℃, 350 ℃ and the pressure of 2303 N/cm2 and 3087 N/cm2. At 2303 N/cm2, the good bonding of copper substrate was confirmed at 350 ℃, and at the increased pressure of 3087 N/cm2, the bonding condition of Cu was confirmed at low temperature junction temperature of 200 ℃. However, the recrystallization of Cu particles was observed due to increased pressure of 3087 N/cm2 and diffusion of Cu atoms at high temperature of 350 ℃, which can lead to degradation in semiconductor manufacturing.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor (최적화 방법에 따른 축류압축기의 효율평가)

  • Jang, Choon-Man;Abdus, Samad;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination (층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향)

  • 김효진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.

Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency (효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화)

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC (일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성)

  • Choi, Baig-Gyu;Do, Jeonghyeon;Jung, Joong Eun;Seok, Woo-Young;Lee, Yu-Hwa;Kim, In Soo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.505-515
    • /
    • 2021
  • Creep properties of directionally solidified Ni-based superalloy CM247LC under various temperature and stress conditions have been investigated. In the heat-treated specimen, some portion of eutectic γ-γ' remained, and uniform cubic γ' was observed in the dendrites. At low temperature (750℃) and high stress condition, a large amount of deformation occurred during the primary creep, while the tertiary creep region accounted for most of the creep deformation under high temperature and low stress condition. γ' particles are sheared by dislocation dissociated into super lattice partial dislocations separated by stacking faults at 750℃. No stacking faults in γ' were found at and above 850℃ due to the temperature dependence of the stacking fault energy. Raft structure of γ' was found after creep test at high temperature of 950℃ and 1000℃. At 850℃, the deformation mechanism was shown to be dependent on the stress condition, and so rafting was observed only under low stress condition.

Static Aeroelastic Optimization of a Composite Wing Using Genetic Algorithm (유전자 알고리즘을 이용한 복합재료 날개의 정적 공탄성 최적화)

  • Kim, Dong-Hyun;Lee, In
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.61-71
    • /
    • 2000
  • Today, the use of composite materials become an essential part in the design and manufacturing process of the flight vehicles to reduce the structural weight. Since the structural properties can be varied largely due to the stacking sequence of ply angles, it is very important problem to determine the optimized ply angles under a design objective. Thus, in this study, the analysis of static aeroelastic optimization of a composite wing has been performed. An analytical system to calculate and optimize tile aero-structural equilibrium position has been developed and incorporated with the genetic algorithm. The effects of stacking sequence on the structural deformation and aerodynamic distribution have been studied and calculated with the condition of minimum structural deformation for a swept-back composite wing. For the set of practical stacking angles, the design results to maximize the performance of static aeroelasticity are also presented.

  • PDF

Vibration Analysis of the Rotating Hybrid Cylindrical Shells Laminated with Metal and Composite (회전하는 금속복합재료 혼합적층 원통쉘의 진동해석)

  • Lee, Young-Sin;Kim, Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.968-977
    • /
    • 1996
  • The linear/nonlinear vibration response of the rotating hybrid cylindrical shell with simply supported boundary condition is studied. The Ritz-Galerkin method is applied to obtain the nonlinear frequency equation, which excludes in-plane and rotatory inertia but includes bending stretching coupling terms. The bifurcation phenomena for the linear frequency and the frequency ratio(nonlinear/linear frequency ratio) are presented. The hybrid cylindrical shells are composed of composite(GFRP, CFRP) metal(aluminium, steel) with symmetric and antisymmetric stacking sequence. The effects of the Coriolis and centrifugal force are considered The results also present the effects of length-to- radies ratio, radius-to-thickness ratio, the circumferential wave number, the stacking sequence, the material property, the initial excitation amplitude and the rotating speed. The present linear frequency results are compared with those of the available literature.