• Title/Summary/Keyword: stacked plate

Search Result 31, Processing Time 0.044 seconds

White OLED and Dual-plate OLED Display

  • Han, Chang-Wook;Pieh, Sung-Hoon;Sung, Chang-Jae;Kim, Hwa-Kyung;Pang, Hee-Suk;Choi, Hong-Seok;Lee, Nam-Yang;Ahn, Byung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.411-414
    • /
    • 2009
  • We report single and two-stacked WOLED. Two-stacked WOLED structure adopts fluorescent blue EML and phosphorescent (red+green) EML. Current efficiency, EQE and color coordinate of two-stacked WOLED are 54.5cd/A, 28.8% and CIExy (0.322, 0.345), respectively. Those of single WOLED are also 20cd/A, 10% and CIExy (0.29, 0.37), respectively. Dual-plate OLED Display (DOD) employing the single WOLED shows high aperture ratio up to 67% in 2-inch panel of which pixel size is equivalent to that of 32 inch Full HD.

  • PDF

A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations

  • Chebbara, F.;Fortaki, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.314-319
    • /
    • 2015
  • The conventional geometry of a plate microstrip resonator is made up of a single metallic patch, which is printed on a monolayer dielectric substrate. Its arrangement is simple and easy to make, but it is limited in its functional abilities. Many searches have been realized to improve the bandwidth and the gain of the microstrip resonators. Among the various configurations proposed in the open literature, the stacked geometry seems to be very promising. By appropriate design, it is able to provide the operation in dual frequency mode, wide bandwidth enough and high gain. The theoretical investigations of structures composed of two stacked anti-reflection coatings, enhanced metallic coatings are available in the literature, however, for the stacked configurations involving three metallic coatings or more, not to exact or approximate analysis was conducted due to the complexity of the structure.

Generation of cutting Path Data for Fully Automated Transfer-type Variable Lamination Manufacturing Using EPS-Foam (완전 자동화된 단속형 가변적층쾌속조형공정을 위한 절단 경로 데이터 생성)

  • 이상호;안동규;김효찬;양동열;박두섭;심용보;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.599-602
    • /
    • 2002
  • A novel rapid prototyping (RP) process, an automated transfer type variable lamination manufacturing process (Automated VLM-ST) has been developed. In Automated VLM-ST, a vacuum chuck and linear moving system transfer the plate type material with two pilot holes to the rotation stage. A four-axis synchronized hotwire cutter cuts the material twice to generate Automated Unit Shape Layer (AUSL) with the desired width, side slopes, length, and two reference shapes in accordance with CAD data. Each AUSL is stacked on the stacking plate with two pilot pins using the pilot holes in AUSL and the pilot pins. Subsequently, adhesive is supplied to the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously applied to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly fabricated. This paper describes the procedure for generating the cutting path data (AUSL data) f3r automated VLM-ST. The method for the generation of the Automated Unit Shape Layer (AUSL) in Automated VLM-ST was practically applied and fabricated for a various shapes.

  • PDF

Performance of a Commercial Scale Radio-frequency/vacuum Dryer Combined with a Mechanical Compressive Load (산업용 규모의 압체고주파진공건조시스템 성능 평가)

  • LEE, Nam-Ho;ZHAO, Xue-Feng;HWANG, Ui-Do;CHANG, Sae-Hwan;SHIN, Ik-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.192-199
    • /
    • 2009
  • This study was carried out to investigate the performance of a radio-frequency/vacuum dryer combined with a mechanical compressive load (RF/VC) with a scale of about $3m^3$ during drying board of Azobe (Lophira alata) and Korean red pine (Pinus densiflora). The degree of vacuum of the RF/VC system was maintained at 80~105 torr, and wood temperature was increased from $40^{\circ}C$ at the beginning of drying to $60^{\circ}C$ at the end of drying and the radiofrequency generator was operated with schedule of 7 minute-ON and 3 minute-OFF. The wood temperatures near charge plate always remained higher than those of the control during all of the drying stage, whereas the wood temperature near ground plate always remained lower than those of the controlled. As drying time proceeding, the temperature of the wood near ground plate presented lower than those of the control. Whereas the temperature of the wood near charge plate presented higher than those of the controlled. The final average moisture contents of the Azobe boards stacked near the input side of the RF generator showed slightly lower than those near the opposite side. Those of the wood stacked in the layers near the charge plate were lower than those of near the ground plate. The average length of surface checks of the Azobe boards stacked near the charge plate was very slight, whereas that toward the ground plate represented high values. The efficiency of input energy was simliar with the commercial systems.

Development of Bipolar Plate Stack Type Microbial Fuel Cells

  • Shin, Seung-Hun;Choi, Young-jin;Na, Sun-Hee;Jung, Seun-ho;Kim, Sung-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.281-285
    • /
    • 2006
  • Microbial fuel cells (MFC) stacked with bipolar plates have been constructed and their performance was tested. In this design, single fuel cell unit was connected in series by bipolar plates where an anode and a cathode were made in one graphite block. Two types of bipolar plate stacked MFCs were constructed. Both utilized the same glucose oxidation reaction catalyzed by Gram negative bacteria, Proteus vulgaris as a biocatalyst in an anodic compartment, but two different cathodic reactions were employed: One with ferricyanide reduction and the other with oxygen reduction reactions. In both cases, the total voltage was the mathematical sum of individual fuel cells and no degradation in performance was found. Electricity from these MFCs was stored in a supercapacitor to drive external loads such as a motor and electric bulb.

Generation of Cutting Path Data for Two Steps of the Cutting Process in Full- Automated VLM-ST (VLM-ST 공정의 완전 자동화를 위한 2단계 절단 경로 데이터 생성 방법에 관한 연구)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.140-148
    • /
    • 2004
  • A novel rapid prototyping (RP) process, a full-automated transfer type variable lamination manufacturing process (Full-automated VLM-ST) has been developed. In the full-automated VLM-ST process, a vacuum chuck and a rectilinear motion system transfer the EPS foam material in the form of the plate with two pilot holes to the rotary supporting stage. The supplied material is then cut into an automated unit shape layer (AUSL) with a desired width, a desired length, a desired slope on the side surface, and a pair of reference shapes, which is called the guide shape (GS)’, including two pilot holes in accordance with CAD data through cutting in two steps using a four-axis synchronized hotwire cutter. Then, each AUSL is stacked by setting each AUSL with two pilot holes in the building plate with two pilot pins, and subsequently, adhesive is applied onto the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously given to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly and automatically fabricated. This paper describes the method to generate guide shapes in AUSL data for the full-automated VLM-ST process. In order to examine the applicability of the method to generate guide shapes, three-dimensional shapes, such as a piston shape and a human head shape, are fabricated from the full-automated VLM-ST apparatus.

Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation

  • Kumar, Puneet;Srinivas, J.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.569-578
    • /
    • 2018
  • This paper aims to investigate the transient vibration behavior of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite plate resting on Pasternak foundation under pulse excitation. The plate is considered to be composed of matrix material and multi-walled carbon nanotubes (MWCNTs) with distribution as per the functional grading concept. The functionally graded distribution patterns in nanocomposite plate are explained more appropriately with the layer-wise variation of carbon nanotubes weight fraction in the thickness coordinate. The layers are stacked up in such a way that it yields uniform and three other types of distribution patterns. The effective material properties of each layer in nanocomposite plate are obtained by modified Halpin-Tsai model and rule of mixtures. The governing equations of an illustrative case of simply-supported nanocomposite plate resting on the Pasternak foundation are derived from third order shear deformation theory and Navier's solution technique. A converge transient response of nanocompiste plate under uniformly distributed load with triangular pulse is obtained by varying number of layer in thickness direction. The validity and accuracy of the present model is also checked by comparing the results with those available in literature for isotropic case. Then, numerical examples are presented to highlight the effects of distribution patterns, foundation stiffness, carbon nanotube parameters and plate aspect ratio on the central deflection response. The results are extended with the consideration of proportional damping in the system and found that nanocomposite plate with distribution III have minimum settling time as compared to the other distributions.

Buckling Strength Analysis of Stiffened Composite Plates for the Optimum Laminate Structure (최적 적층구조를 위한 보강된 복합적층판의 좌굴강도 해석)

  • H.R.,Kim;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 1989
  • The optimun laminated composition of the stiffened composite plates is studied from the view point of buckling strength. The finite element method is applied to the buckling analysis of the composite plates taking into account the effect of shear deformation through the plate thickness. The stiffened plate model is discretized using plate thickness and symmetrically stacked. Parametric study is carried out for the selection of the optimum laminate structure; optimum fiber angle sequence through the thickness. Laminate structure of $[-45^{\circ}/45^{\circ}/90^{\circ}/0^{\circ}]$, is found to give the best buckling strength. For the case of that layer number is more than eight, best result is obtained when layers of the same fiber angle are put together, leaving the laminate has the same fiber angle sequence as a whole.

  • PDF

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Optimization of Automotive PEMFC Bipolar Plates considering Heat Transfer and Thermal Loads (열전달 및 열하중을 고려한 자동차 연료전지(PEMFC) 분리판의 두께 최적설계)

  • Kim, Young-Sung;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2015
  • A stack in the proton exchange membrane fuel cell (PEMFC) consists of bipolar plates, a membrane electrode assembly, a gas diffusion layer, a collector and end plates. High current density is usually obtainable partially from uniform temperature distribution in the fuel cell. A size optimization method considering the thermal expansion effect of stacked plates was developed on the basis of finite element analyses. The thermal stresses in end, bipolar, and cooling plates were calculated based on temperature distribution obtained from thermal analyses. Finally, the optimization method was applied and optimum thicknesses of the three plates were calculated considering both fastening bolt tension and thermal expansion of each unit cell (72 cells, 5kW). The optimum design considering both thermal and mechanical loads increases the thickness of an end plate by 0.64-0.83% the case considering only mechanical load. The effect can be enlarged if the number of stack increases as in an automotive application to 200-300 stacks.