• Title/Summary/Keyword: stacked generalization

Search Result 5, Processing Time 0.02 seconds

Reliability Computation of Neuro-Fuzzy Models : A Comparative Study (뉴로-퍼지 모델의 신뢰도 계산 : 비교 연구)

  • 심현정;박래정;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.293-301
    • /
    • 2001
  • This paper reviews three methods to compute a pointwise confidence interval of neuro-fuzzy models and compares their estimation perfonnanee through simulations. The eOITl.putation methods under consideration include stacked generalization using cross-validation, predictive error bar in regressive models, and local reliability measure for the networks employing a local representation scheme. These methods implemented on the neuro-fuzzy models are applied to the problems of simple function approximation and chaotic time series prediction. The results of reliability estimation are compared both quantitatively and qualitatively.

  • PDF

Predicting movie audience with stacked generalization by combining machine learning algorithms

  • Park, Junghoon;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.217-232
    • /
    • 2021
  • The Korea film industry has matured and the number of movie-watching per capita has reached the highest level in the world. Since then, movie industry growth rate is decreasing and even the total sales of movies per year slightly decreased in 2018. The number of moviegoers is the first factor of sales in movie industry and also an important factor influencing additional sales. Thus it is important to predict the number of movie audiences. In this study, we predict the cumulative number of audiences of films using stacking, an ensemble method. Stacking is a kind of ensemble method that combines all the algorithms used in the prediction. We use box office data from Korea Film Council and web comment data from Daum Movie (www.movie.daum.net). This paper describes the process of collecting and preprocessing of explanatory variables and explains regression models used in stacking. Final stacking model outperforms in the prediction of test set in terms of RMSE.

Weibo Disaster Rumor Recognition Method Based on Adversarial Training and Stacked Structure

  • Diao, Lei;Tang, Zhan;Guo, Xuchao;Bai, Zhao;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3211-3229
    • /
    • 2022
  • To solve the problems existing in the process of Weibo disaster rumor recognition, such as lack of corpus, poor text standardization, difficult to learn semantic information, and simple semantic features of disaster rumor text, this paper takes Sina Weibo as the data source, constructs a dataset for Weibo disaster rumor recognition, and proposes a deep learning model BERT_AT_Stacked LSTM for Weibo disaster rumor recognition. First, add adversarial disturbance to the embedding vector of each word to generate adversarial samples to enhance the features of rumor text, and carry out adversarial training to solve the problem that the text features of disaster rumors are relatively single. Second, the BERT part obtains the word-level semantic information of each Weibo text and generates a hidden vector containing sentence-level feature information. Finally, the hidden complex semantic information of poorly-regulated Weibo texts is learned using a Stacked Long Short-Term Memory (Stacked LSTM) structure. The experimental results show that, compared with other comparative models, the model in this paper has more advantages in recognizing disaster rumors on Weibo, with an F1_Socre of 97.48%, and has been tested on an open general domain dataset, with an F1_Score of 94.59%, indicating that the model has better generalization.

Two Stage Deep Learning Based Stacked Ensemble Model for Web Application Security

  • Sevri, Mehmet;Karacan, Hacer
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.632-657
    • /
    • 2022
  • Detecting web attacks is a major challenge, and it is observed that the use of simple models leads to low sensitivity or high false positive problems. In this study, we aim to develop a robust two-stage deep learning based stacked ensemble web application firewall. Normal and abnormal classification is carried out in the first stage of the proposed WAF model. The classification process of the types of abnormal traffics is postponed to the second stage and carried out using an integrated stacked ensemble model. By this way, clients' requests can be served without time delay, and attack types can be detected with high sensitivity. In addition to the high accuracy of the proposed model, by using the statistical similarity and diversity analyses in the study, high generalization for the ensemble model is achieved. Within the study, a comprehensive, up-to-date, and robust multi-class web anomaly dataset named GAZI-HTTP is created in accordance with the real-world situations. The performance of the proposed WAF model is compared to state-of-the-art deep learning models and previous studies using the benchmark dataset. The proposed two-stage model achieved multi-class detection rates of 97.43% and 94.77% for GAZI-HTTP and ECML-PKDD, respectively.

Ensemble techniques and hybrid intelligence algorithms for shear strength prediction of squat reinforced concrete walls

  • Mohammad Sadegh Barkhordari;Leonardo M. Massone
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.37-59
    • /
    • 2023
  • Squat reinforced concrete (SRC) shear walls are a critical part of the structure for both office/residential buildings and nuclear structures due to their significant role in withstanding seismic loads. Despite this, empirical formulae in current design standards and published studies demonstrate a considerable disparity in predicting SRC wall shear strength. The goal of this research is to develop and evaluate hybrid and ensemble artificial neural network (ANN) models. State-of-the-art population-based algorithms are used in this research for hybrid intelligence algorithms. Six models are developed, including Honey Badger Algorithm (HBA) with ANN (HBA-ANN), Hunger Games Search with ANN (HGS-ANN), fitness-distance balance coyote optimization algorithm (FDB-COA) with ANN (FDB-COA-ANN), Averaging Ensemble (AE) neural network, Snapshot Ensemble (SE) neural network, and Stacked Generalization (SG) ensemble neural network. A total of 434 test results of SRC walls is utilized to train and assess the models. The results reveal that the SG model not only minimizes prediction variance but also produces predictions (with R2= 0.99) that are superior to other models.