• Title/Summary/Keyword: stable throughput

Search Result 88, Processing Time 0.024 seconds

Comments on "Optimal Utilization of a Cognitive Shared Channel with a Rechargeable Primary Source Node"

  • El Shafie, Ahmed;Salem, Ahmed Sultan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.265-266
    • /
    • 2015
  • In a recent paper [1], the authors investigated the maximum stable throughput region of a network composed of a rechargeable primary user and a secondary user plugged to a reliable power supply. The authors studied the cases of an infinite and a finite energy queue at the primary transmitter. However, the results of the finite case are incorrect. We show that under the proposed energy queue model (a decoupled M/D/1 queueing system with Bernoulli arrivals and the consumption of one energy packet per time slot), the energy queue capacity does not affect the stability region of the network.

A Retransmission Power Adjustment Scheme for Performance Enhancement in DS/SSMA ALOHA with Packet Combining

  • Seo Hanbyul;Park Seongyong;Lee Byeong Gi
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • In this paper, we present a retransmission power adjustment (RPA) scheme for DS/SSMA ALOHA packet radio systems with packet combining. In the proposed RPA scheme, retransmission power is adjusted in such a way that the erroneously-received packet can be recovered with a minimized interference to other user packets. We analyze the performance of the system with the RPA by employing the equilibrium point analysis (EPA), and confirm that the results obtained from the EPA are very close to the simulation results in low power cases. Simulation results demonstrate that the RPA scheme brings forth performance gain in the throughput and the average delay while saving a significant amount of transmission power. We also investigate the stability of the system from the EPA results, and conclude that the system becomes stable as the offered load increases or the level of retransmission power decreases.

Simulation for Automatic Diagnosis of Defect in Media Transport System (유연매체 이송 시스템의 고장 진단을 위한 Simulation)

  • Lee, Nam-Hoon;Lyu, Sang-Heon;Koo, J.C.;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.564-568
    • /
    • 2005
  • As functional requirements of automatic office machines like printers, ATMs, copying machines are on a trend for the higher speed and precision, extensive technical advances are being developed and implemented in the industry. Media transport system is a device to convey a sheet of paper in ATMs and printers. The stability of media transport system is a matter of concern as their operating throughput rapidly increases. And defects of belts or rollers in a transport system directly affect the level of stability of the system. Therefore an automatic diagnostic system for predicting various defects is necessary for the stable operation of the media transport system. A simulation based on multi-body dynamics has been done for a feasibility study of a system design for the defect anticipation.

  • PDF

Q-Learning based Collision Avoidance for 802.11 Stations with Maximum Requirements

  • Chang Kyu Lee;Dong Hyun Lee;Junseok Kim;Xiaoying Lei;Seung Hyong Rhee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.1035-1048
    • /
    • 2023
  • The IEEE 802.11 WLAN adopts a random backoff algorithm for its collision avoidance mechanism, and it is well known that the contention-based algorithm may suffer from performance degradation especially in congested networks. In this paper, we design an efficient backoff algorithm that utilizes a reinforcement learning method to determine optimal values of backoffs. The mobile nodes share a common contention window (CW) in our scheme, and using a Q-learning algorithm, they can avoid collisions by finding and implicitly reserving their optimal time slot(s). In addition, we introduce Frame Size Control (FSC) algorithm to minimize the possible degradation of aggregate throughput when the number of nodes exceeds the CW size. Our simulation shows that the proposed backoff algorithm with FSC method outperforms the 802.11 protocol regardless of the traffic conditions, and an analytical modeling proves that our mechanism has a unique operating point that is fair and stable.

A Dynamic Signalling Period Allocation Algorithm in Wireless ATM MAC Protocols (무선 ATM MAC 프로토콜에서 동적 신호 주기 할당 알고리즘)

  • 강상욱;신요안;최승철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1004-1014
    • /
    • 1999
  • MAC protocols in wireless ATM has to increase and maintain the system throughput performance. To achieve these purposes, this paper proposes a dynamic control algorithm called DSPA (Dynamic Signalling Period Allocation) for wireless ATM MAC protocol. The proposed DSPA algorithm consists of the following three algorithms. First, a control slot generation algorithm which generates the control slots by utilizing static and dynamic parameters from the terminals, is proposed. Second, a dynamic signalling period allocation algorithm is proposed for a base station to dynamically determine each signalling period according to current terminal states, and thus allocates the optimal signalling periods. Finally, a dynamic slot allocation algorithm is proposed to dynamically determine priorities of the terminals whenever a slot is allocated. Simulation results indicates that DSPA algorithm decreases average packet delay of the terminals by dynamic allocation of signal periods based on the system utilization, and thus increases the limitation of allowable loads that quarantee quality of services. Also the proposed algorithm is shown to maintain stable throughput even in the case of traffic variations.

  • PDF

The impact of diet on the composition and relative abundance of rumen microbes in goat

  • Liu, Kaizhen;Xu, Qin;Wang, Lizhi;Wang, Jiwen;Guo, Wei;Zhou, Meili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.531-537
    • /
    • 2017
  • Objective: This experiment was conducted to explore the impact of diet on the ruminal microbial community in goats. Methods: Twelve goats were divided into two groups and fed complete feed (CF) or all forage (AF) diet. The total microbial DNAs in the rumen liquid were extracted. The V4 region of microbial 16S rRNA genes was amplified and sequenced using high-throughput. Information of sequences was mainly analyzed by QIIME 1.8.0. Results: The results showed that Bacteroidetes and Firmicutes were the most predominant microbial phyla in the rumen of all goats. At genus level, the abundance of fiber-digesting bacteria such as Ruminococcus and Lachnospiracea incertae sedis was significantly higher in AF than that in CF, while the levels of fat-degrading bacterium Anaerovibrio and protein-degrading bacterium Pseudomonas were opposite. The core shared genera, Prevotella and Butyrivibrio were widespread in the rumen of goats and no significant difference was observed in relative abundance between groups. Conclusion: We concluded that the richness of fiber-, protein-, and fat-digesting bacteria was affected by diet and tended to increase with the rise of their corresponding substrate contents in the ration; some bacteria shared by all goats maintained stable despite the difference in the ration, and they might be essential in maintaining the normal function of rumen.

UAV Network Resource Allocation Algorithm according to the Network Environment and Data Requirement (네트워크 환경 및 데이터 요구사항에 따른 무인기 네트워크 자원할당 알고리즘)

  • Cheon, Hye-Rim;Hwang, Chan-Ho;Lee, Woosin;Yoo, Indeok;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.3-11
    • /
    • 2017
  • UAV system has the limitation to allocate enough spectrum bandwidth for the operation of multiple UAVs due to the market expansion. In addition, the communication environment of UAV network varies dynamically due to the UAV's mobility. Thus, to operate the stable UAV system and maximize the transmission data rate, it needs to allocate the resource effectively in the limited bandwidth considering the given network environment. In this paper, we propose the resource allocation algorithm which can maximize the network throughput as well as satisfy the minimum data requirement for the UAV system operation in the given network environment based on TDMA(Time Division Multiple Access). By performance analysis, we show that the proposed algorithm can allocate the resource to satisfy the high network throughput as well as the minimum data requirement in the given network environment.

Implementation of Network Traffic and QoS Monitoring System based on User Agent (사용자 에이전트 기반의 네트워크 트래픽 및 QoS 모니터링 시스템 구현)

  • Lee, Do-Hyeon;Jung, Jae-Il
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2008
  • Recently amount of traffic into the network rapidly increase since multimedia streaming services is generally adopted for application. In addition, various network management systems have been suggested for providing a stable service and QoS guarantee. It is necessary for such systems to have QoS monitoring module in order to evaluate acceptance or violation of QoS requirements by analogizing a state information of each node within network. In this paper, we suggest a network management system to evaluate QoS level between end-to-end agents and analysis traffics transmitted between them. The proposed system is implemented for the purpose of collecting network traffic information and monitoring of the view. The proposed system makes user easily understand information of QoS parameters such as throughput, delay and jitter by adopting a method of visual and numerical representation. To achieve this, we purportedly generate test packet into network for confirming acceptance or violation of QoS requirements from point of view of multimedia application service.

  • PDF

Stochastic Optimization of Multipath TCP for Energy Minimization and Network Stability over Heterogeneous Wireless Network

  • Arain, Zulfiqar Arain;Qiu, Xuesong;Zhong, Lujie;Wang, Mu;Chen, Xingyan;Xiong, Yongping;Nahida, Kiran;Xu, Changqiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.195-215
    • /
    • 2021
  • Multipath Transport Control Protocol (MPTCP) is a transport layer protocol that enables multiple TCP connections across various paths. Due to path heterogeneity, it incurs more energy in a multipath wireless network. Recent work presents a set of approaches described in the literature to support systems for energy consumption in terms of their performance, objectives and address issues based on their design goals. The existing solutions mainly focused on the primary system model but did not discourse the overall system performance. Therefore, this paper capitalized a novel stochastically multipath scheduling scheme for data and path capacity variations. The scheduling problem formulated over MPTCP as a stochastic optimization, whose objective is to maximize the average throughput, avoid network congestion, and makes the system more stable with greater energy efficiency. To design an online algorithm that solves the formulated problem over the time slots by considering its mindrift-plus penalty form. The proposed solution was examined under extensive simulations to evaluate the anticipated stochastic optimized MPTCP (so-MPTCP) outcome and compared it with the base MPTCP and the energy-efficient MPTCP (eMPTCP) protocols. Simulation results justify the proposed algorithm's credibility by achieving remarkable improvements, higher throughput, reduced energy costs, and lower-end to end delay.

Adaptive Modulation System Using SNR Estimation Method Based on Correlation of Decision Feedback Signal (Decision Feedback 신호의 자기 상관 기반 SNR 추정 방법을 적용한 적응 변조 시스템)

  • Kim, Seon-Ae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.282-291
    • /
    • 2011
  • Adaptive modulation(AM) is an important technique to increase the system efficiency, in which transmitter selects the most suitable modulation mode adaptively according to channel state in the temporary and spatially varying communication environment. Fixed modulation on channels with varying signal-to-noise ratio(SNR) is that the bit-errorrate(BER) probability performance is changing with the channel quality. An adaptive modulation scheme can be designed to have a BER which is constant for all channel SNRs. The correct as well as fast and simple SNR estimation is required essentially for this adaptive modulation. In order to operate adaptive modulation system effectively, in this paper, we analyze the effect of SNR estimation performance to it through the average BER and data throughput. Applying SNR estimation based on auto-correlation of decision feedback signal and others to adaptive modulation system, we also confirm performance degradation or improvement of its which is decided by SNR estimation error at each transition point of modulation level. Since SNR estimation based on auto-correlation of decision feedback signal shows stable estimation performance for various quadrature amplitude modulation(QAM) comparatively, this can be reduced degradation than others at each transition point of modulation level.