• Title/Summary/Keyword: stable inversion

Search Result 83, Processing Time 0.018 seconds

Development of Network Based MT Data Processing System (네트워크에 기반한 MT자료의 처리기술 개발 연구)

  • Lee Heuisoon;Kwon Byung-Doo;Chung Hojoon;Oh Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2000
  • The server/client systems using the web protocol and distribution computing environment by network was applied to the MT data processing based on the Java technology. Using this network based system, users can get consistent and stable results because the system has standard analysing methods and has been tested from many users through the internet. Users can check the MT data processing at any time and get results during exploration to reduce the exploration time and money. The pure/enterprised Java technology provides facilities to develop the network based MT data processing system. Web based socket communication and RMI technology are tested respectively to produce the effective and practical client application. Intrinsically, the interpretation of MT data performing the inversion and data process requires heavy computational ability. Therefore we adopt the MPI parallel processing technique to fit the desire of in situ users and expect the effectiveness for the control and upgrade of programing codes.

  • PDF

Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene) (PVdF계 미세기공 고분자 전해질의 전기화학적 특성)

  • Jung Kang-Kook;Kim Jong-Uk;Ahn Jou-Hyeon;Kim Ki-Won;Ahn Hyo-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.183-188
    • /
    • 2004
  • In order to develop polymer electrolyte for lithium/sulfur batteries, highly microporous P(VdF-HFP) membranes were prepared by phase inversion method. Porous structure was controlled by extracting NMP with mixture of deionized water and methanol. Porous structure of the membranes was observed with SEM. Polymer electrolytes were prepared by soaking the porous membranes in 1M $LiCF_3SO_3-TEGDME/EC$. The ionic conductivity of polymer electrolyte was found to be at high as $2\times10^{-3}S/cm$ when the polymer membrane extracted by $80\%$ methanol was used. The microporous polymer electrolyte optimized in this work displayed high ionic conductivity, uniform pore size, low interfacial resistance and stable ionic conductivity with storage time. The ionic conductivity of polymer electrolytes was measured with various lithium salts, and the conductivity showed $3.3\times10^{-3}S/cm$ at room temperature when $LiPF_6$ was used as a lithium salt.

Experimental Investigation of Stannite-Sphalerite System In Relation to Ores (황석석일섬아연석계(黃錫石一閃亞鉛石系)의 실험연구(實驗硏究)와 천연건물(天然鍵物)에의 활용(活用))

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • The subject of this study deals with phase relations between stannite ($Cu_2FeSnS_4$) and sphalerite (${\beta}-ZnS$)/wurtzite (${\alpha}-ZnS$). The phase relations were systematically investigated from liquidus temperature to $400^{\circ}C$ under controlled conditions. ${\beta}-stannite$ (tetragonal) is stable up to $706{\pm}5^{\circ}C$, where it inverts to a high-temperature polymorph ${\alpha}-stannite$ (cubic) melting congruently at $867{\pm}5^{\circ}C$. Sphalerite (cubic, ${\beta}-ZnS$) inverts at $1013{\pm}3^{\circ}C$ to wurtzite, which is the hexagonal hightemperature polymorph of ZnS. Between ${\alpha}-stannite$ and sphalerite a complete solid solution series exists above approximately $870^{\circ}C$ up to solidus temperature. The melting temperature of ${\alpha}-stannite$ rises towards sphalerite and reaches a maximum at $1074{\pm}3^{\circ}C$, which is the peritectic with the composition of 91 wt. % sphalerite and 9 wt. % ${\alpha}-stannite$. At this temperature, wurtzite takes only 5wt. % ${\alpha}-stannite$ in solid solution which decreases with increasing temperature. The inverson temperature of ${\alpha}/{\beta}-stannite$ is lowered with increasing amounts of sphalerite in solid solution down to $614{\pm}7^{\circ}C$, which is the eutectoid with the composition of 13 wt. % sphalerite and 87 wt. % ${\alpha}-stannite$. Here, ${\beta}-stannite$ contains only 10wt. % sphalerite in solid solution. With decreasing temperature, the ranges of the solid solution on both sides of the system narrow. The phase relations in the above pure system changed due to the FeS impurities in the sphalerite solid solution. The eutectoid increased from $614{\pm}7^{\circ}C$ up to $695{\pm}5^{\circ}C$ (5 wt. % FeS) and $700{\pm}5^{\circ}C$ (10wt. % FeS), while the peritectic decreased from $1074{\pm}3^{\circ}C$ down to $1036{\pm}3^{\circ}C$ (wt. %FeS) and $987{\pm}3^{\circ}C$ (10wt. %FeS). A most notable change is the appearance of non-binary regions. An important feature is the combination of this study system with the experimental results reported by Sprinfer (1972). If a stannite-kesterite solid solution is used in the place of stannite as a bulk composition, the inversion temperature is lowered to less than $400^{\circ}C$ which belongs to temperatures of the hydrothermal region.

  • PDF