DOI QR코드

DOI QR Code

Electrochemical Characteristics of Microporous Polymer Electrolytes Based on Poly(vinylidene-co-hexafluoropropylene)

PVdF계 미세기공 고분자 전해질의 전기화학적 특성

  • Jung Kang-Kook (Department of Chemical Engineering and ITRCESC, Gyeongsang National University) ;
  • Kim Jong-Uk (ITRC for Energy Storage & Conversion, Gyeongsang National University) ;
  • Ahn Jou-Hyeon (Department of Chemical Engineering and ITRCESC, Gyeongsang National University) ;
  • Kim Ki-Won (Department of Metallurgical and Materials Engineering and ITRCESC, Gyeongsang National University) ;
  • Ahn Hyo-Jun (Department of Metallurgical and Materials Engineering and ITRCESC, Gyeongsang National University)
  • 정강국 (경상대학교 화학공학과 및 IT용 에너지 저장 및 변환센터) ;
  • 김종욱 (경상대학교 IT용 에너지 저장 및 변환센터) ;
  • 안주현 (경상대학교 화학공학과 및 IT용 에너지 저장 및 변환센터) ;
  • 김기원 (경상대학교 금속재료공학과 및 IT용 에너지 저장 및 변환센터) ;
  • 안효준 (경상대학교 금속재료공학과 및 IT용 에너지 저장 및 변환센터)
  • Published : 2004.11.01

Abstract

In order to develop polymer electrolyte for lithium/sulfur batteries, highly microporous P(VdF-HFP) membranes were prepared by phase inversion method. Porous structure was controlled by extracting NMP with mixture of deionized water and methanol. Porous structure of the membranes was observed with SEM. Polymer electrolytes were prepared by soaking the porous membranes in 1M $LiCF_3SO_3-TEGDME/EC$. The ionic conductivity of polymer electrolyte was found to be at high as $2\times10^{-3}S/cm$ when the polymer membrane extracted by $80\%$ methanol was used. The microporous polymer electrolyte optimized in this work displayed high ionic conductivity, uniform pore size, low interfacial resistance and stable ionic conductivity with storage time. The ionic conductivity of polymer electrolytes was measured with various lithium salts, and the conductivity showed $3.3\times10^{-3}S/cm$ at room temperature when $LiPF_6$ was used as a lithium salt.

리튬 설퍼전지용 고분자 전해질을 개발하기 위해 상전이 방법으로 미세기공 P(VdF-HFP) 고분자 필름을 제조하였다. 미세기공 고분자 전해질은 NMP추출에 사용되는 증류수와 메탄올의 혼합 농도를 조절함으로써 고분자 필름 내부의 기공 구조 형성을 제어할 수 있었다. $80\%$ 메탄올로 제조한 미세기공 고분자 필름에 1M $LiCF_3SO_3-TEGDME/EC$의 액체 전해질을 함침시켜 제조한 고분자 전해질이 가장 높은 이온 전도도를 나타냈으며 리튬 이차전지에 사용 가능한 $2\times10^{-3}S/cm$의 이온전도도를 나타내었다. 또한 고분자 필름의 기공도가 균일하고 저장 시간에 따른 이온전도도 감소도 적었으며, 리튬 전극과의 계면저항도 가장 낮게 나타났다. 리튬염에 따른 이온전도도를 측정한 결과 $LiPF_6$를 사용한 고분자 전해질이 상온에서 $3.3\times10^{-3}S/cm$로 나타났다.

Keywords

References

  1. D. E. Fenton, J. M. Parker, and P. V Wright, Polymer, 14, 589 (1973)
  2. M. Watanabe, T. Endo, A. Nishimoto, K. Miura, and M. Yanagida, J. Power Sources, 81/82, 786 (1999) https://doi.org/10.1016/S0378-7753(99)00250-5
  3. A. S. Best, A. Ferry, D. R. MacFarlane, and M. Forsyth, Solid State lonics, 126, 269 (1999) https://doi.org/10.1016/S0167-2738(99)00239-8
  4. G. B. Appetecchi, F. Croce, and B. Scrosati, J. Power Sources, 66, 77 (1997) https://doi.org/10.1016/S0378-7753(96)02484-6
  5. M. Watanabe, M. Kanba, K. Nagaoka, and I. Shinohara, J. Appl. Electrochem., 27, 4191 (1982)
  6. K. M. Abraham and M. Alamgir, J. Electrochem. Soc., 137, 1657(1990) https://doi.org/10.1149/1.2086749
  7. O. Bohnke, C. Rousselot, P.A. Gillet, and C. Truche, J. Electrochem.Soc., 139, 1862 (1992) https://doi.org/10.1149/1.2069512
  8. E. Tsuchida, H. Ohno, and K. Tsunemi, Electrochim. Acta, 28, 591(1983) https://doi.org/10.1016/0013-4686(83)85049-X
  9. H. S. Choe, J. Giaccai, M. Alamgir, and K.M. Abraham, Electrochim. Acta, 40, 2289 (1995) https://doi.org/10.1016/0013-4686(95)00180-M
  10. D. W. Kim, Y. R. Kim, J. K. Park, and S. I. Moon, Solid State Ionics, 106, 329 (1998) https://doi.org/10.1016/S0167-2738(97)00498-0
  11. J. Y. Song, Y. Y. Wang, and C. C. Wan, J. Power Sources, 77, 183 (1999) https://doi.org/10.1016/S0378-7753(98)00193-1
  12. J. M. Tarascon, A. S. Goztz, C. Schmutz, F. Shokoohi, and P. C.Warren, Solid State Ionics, 86, 49 (1996) https://doi.org/10.1016/0167-2738(96)00330-X
  13. Z. Jiang, B. Carroll, and K. M. Abraham, Electrochim. Acta, 42, 2667 (1997) https://doi.org/10.1016/S0013-4686(97)00005-4
  14. Y. Saito, C. Capiglia, H. Kataoka, H. Yamamoto, H. Ishikawa, and P. Mustarelli, Solid State Ionics, 136/137, 1161 (2000)
  15. P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami, and S. Deki, J. Power Sources, 88, 269(2000) https://doi.org/10.1016/S0378-7753(99)00348-1
  16. J. M. Tarascon, A. S. Gozdz, C. Schmutz, F. Shokoohi, and P. C. Warren, Solid State Ionics, 86-88, 49 (1996) https://doi.org/10.1016/0167-2738(96)00330-X
  17. F. Boudin, X. Andrieu, C. Jehoulet, and I. I. Olsen, J. Power Sources, 81/82, 804 (1999) https://doi.org/10.1016/S0378-7753(99)00154-8
  18. A. Du Pasquier, P. C. Warren, D. Culver, A. S. Gozdz, G. G.Amatucci, and J. M. Tarascon, Solid State Ionics, 135, 249 (2000) https://doi.org/10.1016/S0167-2738(00)00371-4
  19. T. Michot, A. Nishimoto, and M. Watanabe, Electrochim. Acta, 45, 1347 (2000) https://doi.org/10.1016/S0013-4686(99)00343-6
  20. D. W. Kim and Y. K. Sun, J. Power Sources, 102, 41 (2001) https://doi.org/10.1016/S0378-7753(01)00771-6
  21. H. S. Ryu, C. W. Park, K. W. Kim, J. H. Ahn, J. Y. Lee, and H. J. Ahn, Proceedings of the 43rd Battery Symposium in Japan, 62 (2002)

Cited by

  1. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers vol.54, pp.2, 2008, https://doi.org/10.1016/j.electacta.2008.08.007
  2. Composite gel polymer electrolyte with ceramic particles for LiNi 1/3 Mn 1/3 Co 1/3 O 2 -Li 4 Ti 5 O 12 lithium ion batteries vol.236, 2017, https://doi.org/10.1016/j.electacta.2017.03.176
  3. Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries vol.19, pp.4, 2016, https://doi.org/10.5229/JKES.2016.19.4.123