• 제목/요약/키워드: stable element

검색결과 607건 처리시간 0.029초

A Study on Characteristics of Flux-offset-type Fault Current limiter according to Initial fault current

  • Jung, Byungik;Hwang, Junwon;Choi, Hyosang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.117-122
    • /
    • 2015
  • Our research team proposed a flux-offset type fault current limiter as a new limiter. The flux-offset type fault current limiter uses a fault current limit technology based on the flux offset principle of the primary and secondary windings of a transformer. Stable fault current limit characteristics were achieved through a preliminary study. However, it was discovered that the initial fault current was not limited. Therefore, in this paper, a high-speed interrupter and a superconducting element were separately applied to the secondary winding of the flux-offset type fault current limiter and the operating characteristics were comparatively analyzed. In the experiment, when the superconducting element was applied to the secondary winding of the transformer, the initial fault current was limited while the limitation in the operation time was further shortened.

접촉면 형상에 따른 비접촉식 기계시일의 열거동 특성에 관한 유한요소해석 (Finite Element Analysis on the Thermal Behaviors of Non-Contact Type Mechanical Seals Depending on Contacting Face Geometry)

  • 조승현;김청균
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.34-41
    • /
    • 2002
  • This paper presents the contact thermal behaviors of mechanical seals depending on the contacting face geometry. Using the finite element analysis, the temperature distribution, thermal distortion and leakage have been analyzed as functions of sealing gap and rotating speed of the seal ring shaft. The FE results indicate that the inclined contacting face may be more effective and stable based on the results of thermal characteristic analysis if the seal ring has been designed with a same thermal capacity between conventional rectangular sealing faces and inclined seating surface of seal rings.

유한요소법을 이용한 과도 선형 동탄성 해석 (Transient Linear Elastodynamic Analysis by the Finite Element Method)

  • 황은하;오근
    • 한국산업융합학회 논문집
    • /
    • 제12권3호
    • /
    • pp.149-155
    • /
    • 2009
  • A new finite element equation is derived by applying quadratic and cubic time integration scheme to the variational formulation in time-integral for the analysis of the transient elastodynamic problems to increase the numerical accuracy and stability. Emphasis is focused on methodology for cubic time integration scheme procedure which are never presented before. In this semidiscrete approximations of the field variables, the time axis is divided equally and quadratic and cubic time variation is assumed in those intervals, and space is approximated by the usual finite element discretization technique. It is found that unconditionally stable numerical results are obtained in case of the cubic time variation. Some numerical examples are given to show the versatility of the presented formulation.

  • PDF

완충 포장한 모니터의 자유낙하시험을 위한 유한요소모델 (A Finite Element Model for the Free Drop Test of the Monitor Packed by Cushioning Materials)

  • 황용익;윤성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.78-85
    • /
    • 2002
  • This paper deals with the finite element model of the monitor for the simulation of directional free drop tests such as backward, sideward, edge and vertex drop. The model was made for an unconditional stable solution for the explicit integration algorithm. The general behaviors at the time of impact were found to well correlate with the actual situation in terms of acceleration, displacement, contact force and stress of monitor components even though the experiment of the associated drop is performed for the validity of the model.

  • PDF

운동자계문제의 해석을 위한 유한요소법에 관한 연구 (Travelling Magnetic Field Problem Analyses by Finite Element Method)

  • 한필완;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.76-78
    • /
    • 1999
  • This paper presents Galerkin- and Upwind-finite element analyses solution in the travelling magnetic filed problem. The travelling magnetic field problem is subject to convective- diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Derichlet, Noumann and periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FEM is stable regardless boundary condition.

  • PDF

다층형 Fe/Cr 자성박막에서 계면확산의 방사광 x-선 연구 (Interfacial diffusion in Fe/Cr magnetic multilayers studied by synchrotron x-ray techniques)

  • 조태식;정지욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 초전도 자성체 연구회
    • /
    • pp.84-87
    • /
    • 2003
  • The interfacial diffusion in Fe/Cr/MgO(001) multilayers has been studied using synchrotron x-ray techniques, such as x-ray reflectivity, extended x-ray absorption fine structures (EXAFS), and anomalous x-ray scattering (AXS). The results of x-ray reflectivity indicated that the interfacial roughness of Fe/Cr multilayers with Cr-$4{\AA}$-thick was larger than that with Cr-$4{\AA}$-thick. The results of EXAFS indicated that the Fe element dominantly diffuse into the stable Cr layers at the Fe/Cr interface. The AXS was certified the existence of the interdiffused Fe element in the Cr layers. Our study revealed that the rough interface of the Fe/Cr multilayers was caused by the interfacia diffusion of Fe element into the Cr layers.

  • PDF

Finite-element Method for Heat Transfer Problem in Hydrodynamic Lubrication

  • Kwang-June,Bai
    • 대한조선학회지
    • /
    • 제19권4호
    • /
    • pp.19-29
    • /
    • 1982
  • Galerkin's finite element method is applied to a two-dimensional heat convection-diffusion problem arising in the hydrodynamic lubrication of thrust bearings used in naval vessels. A parabolized thermal energy equation for the lubricant, and thermal diffusion equations for both bearing pad and the collar are treated together, with proper juncture conditions on the interface boundaries. it has been known that a numerical instability arises when the classical Galerkin's method, which is equivalent to a centered difference approximation, is applied to a parabolic-type partial differential equation. Probably the simplest remedy for this instability is to use a one-sided finite difference formula for the first derivative term in the finite difference method. However, in the present coupled heat convection-diffusion problem in which the governing equation is parabolized in a subdomain(Lubricant), uniformly stable numerical solutions for a wide range of the Peclet number are obtained in the numerical test based on Galerkin's classical finite element method. In the present numerical convergence errors in several error norms are presented in the first model problem. Additional numerical results for a more realistic bearing lubrication problem are presented for a second numerical model.

  • PDF

고속전철용 레일-휠 접촉에서 응력분포에 관한 유한요소해석 (Finite Element Analysis on the Stress Distributions in Rail-Wheel Contacts of High Speed Trains)

  • 김청균;김기환
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.93-101
    • /
    • 1997
  • The numerical results on the stress distributions of rail-wheel contact problems are presented for three models in a high-speed rail system. These models which have straight and tapered (1:40 and 1:20) contact geometries between the wheelset and rail are analyzed using the finite element approach. From the simulation results we found that the tapered geometry (1:20) of railwheel contact base line showed very stable contact stress distributions for a whole contact position between the wheel and rail in a curved rail section. The FEM computed results may present an optimized slope geometry of rail-wheel contact in a high-speed railway system.

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

모서리특이성이 존재하는 유체유동의 특이유한요소를 이용한 수치해석적 연구 (A numerical analysis of driven cavity flow using singular finite element method)

  • 김동수;이진희
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.2971-2980
    • /
    • 1995
  • A numerical study of fluid flow in driven cavity was carried out using singular finite element method. The driven cavity problem is known to have infinite velocity gradients as well as dual velocity conditions at the singular points. To overcome such difficulties, a finite element method with singular shape functions was used and a special technique was employed to allow multiple values of velocities at the singular points. Application of singular elements in the driven cavity problem has a significant influence on the stability of solution. It was found the singular elements gave a stable solution, especially, for the pressure distribution of the entire flow field by keeping up a large pressure at the singular points. In the existing solutions of driven cavity problem, most efforts were focused on the study of streamlines and vorticities, and pressure were seldom mentioned. In this study, however, more attention was given to the pressure distribution. Computations showed that pressure decreased very rapidly as the distance from the singular point increased. Also, the pressure distribution along the vertical walls showed a smoother transition with singular elements compared to those of conventional method. At the singular point toward the flow direction showed more pressure increase compared with the other side as Reynolds number increased.