• Title/Summary/Keyword: stable cells

Search Result 970, Processing Time 0.031 seconds

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

Membrane Topology of Helix 0 of the Epsin N-terminal Homology Domain

  • Kweon, Dae-Hyuk;Shin, Yeon-Kyun;Shin, Jae Yoon;Lee, Jong-Hwa;Lee, Jung-Bok;Seo, Jin-Ho;Kim, Yong Sung
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.428-435
    • /
    • 2006
  • Specific interaction of the epsin N-terminal homology(ENTH) domain with the plasma membrane appears to bridge other related proteins to the specific regions of the membrane that are invaginated to form endocytic vesicles. An additional $\alpha$-helix, referred to as helix 0 (H0), is formed in the presence of the soluble ligand inositol-1,4,5-trisphosphate [$Ins(1,4,5)P_3$] at the N terminus of the ENTH domain (amino acid residues 3-15). The ENTH domain alone and full-length epsin cause tubulation of liposomes made of brain lipids. Thus, it is believed that H0 is membrane-inserted when it is coordinated with the phospholipid phosphatidylinositol-4,5-bisphosphate [$PtdIns(4,5)P_2$], resulting in membrane deformation as well as recruitment of accessory factors to the membrane. However, formation of H0 in a real biological membrane has not been demonstrated. In the present study, the membrane structure of H0 was determined by measurement of electron paramagnetic resonance (EPR) nitroxide accessibility. H0 was located at the phosphate head-group region of the membrane. Moreover, EPR line-shape analysis indicated that no pre-formed H0-like structure were present on normal acidic membranes. $PtdIns(4,5)P_2$ was necessary and sufficient for interaction of the H0 region with the membrane. H0 was stable only in the membrane. In conclusion, the H0 region of the ENTH domain has an intrinsic ability to form H0 in a $PtdIns(4,5)P_2$-containing membrane, perhaps functioning as a sensor of membrane patches enriched with $PtdIns(4,5)P_2$ that will initiate curvature to form endocytic vesicles.

Expression of BrD1, a Plant Defensin from Brassica rapa, Confers Resistance against Brown Planthopper (Nilaparvata lugens) in Transgenic Rices

  • Choi, Man-Soo;Kim, Yul-Ho;Park, Hyang-Mi;Seo, Bo-Yoon;Jung, Jin-Kyo;Kim, Sun-Tae;Kim, Min-Chul;Shin, Dong-Bum;Yun, Hong-Tai;Choi, Im-Soo;Kim, Chung-Kon;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

Development of Chicken Immunoglobulin Y for Rapid Detection of Cronobacter muytjensii in Infant Formula Powder

  • Kim, Yesol;Shukla, Shruti;Ahmed, Maruf;Son, Seokmin;Kim, Myunghee;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.706-712
    • /
    • 2012
  • The present study was aimed to produce a chicken polyclonal antibody against Cronobacter muytjensii and to develop an immunoassay for its detection. Purification of anti-C. muytjensii IgY from egg yolk was accomplished using various methods such as water dilution and salt precipitation. As a result, sodium dodecyl sulfate-polyacrylamide gel electrophoresis produced two bands around 30 and 66 kDa, corresponding to a light and a heavy chain, respectively. Indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was performed to determine the effectiveness of the chicken IgY against C. muytjensii. The optimum conditions for detecting C. muytjensii by indirect ELISA and checkerboard titration of the antigen revealed an optimum average absorbance at the concentration of 18 ${\mu}g/mL$, having ca. $10^8$ coated cells per well. The anti-C. muytjensii IgY antibody had high specificity for C. muytjensii and low cross-reactivity with other tested pathogens. In this assay, no cross-reactivity was observed with the other genera of pathogenic bacteria including Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Bacillus cereus, Enterobacter aerogenes, Salmonella Enteritidis and Listeria monocytogenes. In addition, detection of C. muytjensii in infant formula powder showed a low matrix effect on the detection curve of IC-ELISA for C. muytjensii, with similar detection limit of $10^5$ CFU/mL as shown in standard curve. These findings demonstrate that the developed method is able to detect C. muytjensii in infant formula powder. Due to the stable antibody supply without sacrificing animals, this IgY can have wide applications for the rapid and accurate detection of C. muytjensii in dairy foods samples.

A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

  • Jung, Ga Young;Park, Ju Yeon;Choi, Hyo Ju;Yoo, Sung-Je;Park, Jung-Kwon;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

High Rate Dissolved Air Flotation (DAF) for the Removal of Algae Species (유입원수 조류제거를 위한 high rate DAF 최적화 연구)

  • Jung, Woosik;An, Ju-Suk;Song, Keun-Won;Oh, Hyun-Je
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.415-419
    • /
    • 2017
  • In recent years there have been large increases in the hydraulic loading rates used to design dissolved air flotation (DAF) facilities for drinking water applications. High rate DAF processes are now available at loading rates of 20 to $40m^3/m^2{\cdot}h$. This research evaluated dissolved air flotation as a separation method for algae and organic compounds from water treatment plants. During the service period of 2016. 5. to 2017. 6., DAF pilot plants ($500m^3/day$) process has shown a constantly sound performance for the treatment of raw water, yielding a significantly low level of turbidity (DAF treated water, 0.21~1.56 NTU). As a result of analyzing the algae cell counts in the influent source, it was expressed at 100-120 cells/mL. In DAF treated water, the removal efficient of alge cell counts was found to be upto 90%. The stable turbidity and algae removal were confirmed by operating the high rate DAF process under the condition of the surface loading rate of $30m^3/m^2{\cdot}hr$.

The Production of Transgenic Mouse Harboring Mutated Pig Rhodopsin Gene (돌연변이가 야기된 돼지 로돕신 유전자를 지닌 형질전환동물의 생산)

  • 김도형;김진회;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.191-197
    • /
    • 1994
  • It is generally known that mutations in any of several genes encoding photoreceptor-specific proteins have resulted in retinitis pigmentosa (RP), a disease characterized by losing photoreceptor function with progressive degeneration of photoreceptor cells and eventually leading to blindness. To study the procure and cure of photoreceptor degeneration, we produced transgenic mice. Transgene consisted of a 12.5kb genomic DNA fragment that contains mutated pig rhodopsin gene (Pro-347-Ser) including both the 5'-franking (4.0 kb) and the 3'-franking (2.9 kb) sequences. This gene was used for the production of transgenic mouse. The mutated rhodopsin DNA was microinjected into male pronuclei of fertilized mouse (C57BL /6]) embryos. We detected transgenic animals harboring mutated rhodopsin gene by PCR and Southern blot analysis. These transgenic mice showed stable transmission of microinjected rhodopsin gene into their offspring. Therefore these animals will provide a novel approach to study the mechanism of the photoreceptor degeneration and be provided as a disease model for the treatment of the blind in human.

  • PDF

Isolation of Amylolytic Bifidobacterium sp. Int-57 and Characterization of Amylase

  • Ji, Geun-Eog;Han, Hee-Kyung;Yun, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 1992
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic microorganisms. The distribution of amylolytic microorganisms in the human large intestinal tract was investigated in various individuals of differing ages using anaerobic culture techniques. A large percentage of the amylolytic microorganisms present belonged to the Genus Bifidobacteria. The number of Bifidobacteria increased significantly at two years of age. Adults and children above 2 years old carried about $0.8{\times}10^9-2.0{\times}10^{10}$ colony forming units (CFU/gram) of amylolytic Bifidobacteria. Among these amylolytic Bifidobacteria, Int-57 was chosen for further studies. Between 65% and 85% of the amylase produced was secreted and the remaining amylase was bound to the cell wall facing the outside. Amylase production could be induced by starch in a stable form. When cells were grown on maltose or glucose, amylase production was much lower than on starch and amylase activity disappeared after 24 hours growth on these media. Partially purified enzymes showed optimum activity at a temperature of $50^{\circ}C$ and at an optimum pH of 5.5, respectively. Heat treatment at $70^{\circ}C$ for 30 minutes almost completely inactivated amylase. The hydrolysis products of starch were mainly maltose and maltotriose. Soluble starch, amylose, amylopectin, and $\gamma$-cyclodextrin($\gamma$-CD) were easily hydrolyzed. The rate of hydrolysis of $\alpha$-CD and $\beta$-CD was slower than that of $\gamma$-CD. Carboxymethyl cellulose, $\beta$-1, 3-glucan and inulin were not hydrolyzed.

  • PDF

NAD(P)H Quinone Oxidoreductase 1 (NQO1) as a Cancer Therapeutic Target (암 치료 표적으로의 NAD(P)H Quinone Oxidoreductase 1 (NQO1))

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.98-103
    • /
    • 2014
  • NAD(P)H quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes the two electron reduction of diverse substrates, including quinones. It uses NADH or NADPH as a cofactor for enzymatic machinery. In the metabolism of quinones, NQO1 has two conflicting functions because of the different stability of converted hydroquinones. The stable form of hydroquinone is excreted from cells by conjugation with glutathione or glucuronic acid. The unstable form of hydroquinone induces cell death by induction of oxidative stress and DNA damage. Certain quinones known as bio-reductive agents have a cytotoxic function following reduction by NQO1. Bio-reductive agents, such as ${\beta}$-lapachone or mitomycin C, induce the depletion of NAD(P)H and the generation of oxidative stress in an NQO1-dependent manner. NQO1 is highly expressed in several cancer tissues. Therefore, NQO1 is a good therapeutic target for cancer treatment with bio-reductive agents.

Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells (Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상)

  • Shin, Won-Kyung;Park, Se-Mi;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.156-163
    • /
    • 2014
  • In this study, we tried to improve the cycling performance of lithium-ion batteries by suppressing decomposition of the electrolyte solution containing fluorsilane-based additive. Trifluoropropyltrimethoxysilane was electrochemically oxidized and reduced prior to the decomposition of the liquid electrolyte composed of lithium salt and carbonate-based organic solvent. Thus, the stable solid electrolyte interphase (SEI) layer on both negative electrode and positive electrode was formed, and it was confirmed that the cycling performance of lithium-ion batteries assembled with electrolyte solution containing 5 wt.% trifluoropropyltrimethoxysilane was the mostly enhanced. The products formed on electrodes were analyzed by the SEM and XPS analysis, and it was demonstrated that trifluoropropyltrimethoxysilane can be one of the promising SEI-forming additives.