References
- Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, London, UK.
- Arnaud, D. and Hwang, I. 2015. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant 8:566-581. https://doi.org/10.1016/j.molp.2014.10.012
- Buchmann, K. 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5:459.
- Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63. https://doi.org/10.1016/S0092-8674(00)81858-9
- Cecchini, N. M., Jung, H. W., Engle, N. L., Tschaplinski, T. J. and Greenberg, J. T. 2015. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol. Plant-Microbe Interact. 28:455-466. https://doi.org/10.1094/MPMI-06-14-0187-R
- Century, K. S., Holub, E. B. and Staskawicz, B. J. 1995. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. U. S. A. 92:6597-6601. https://doi.org/10.1073/pnas.92.14.6597
- Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K. T., Gao, Q. M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43:421-427. https://doi.org/10.1038/ng.798
- Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J. and Shah, J. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 71:161-172. https://doi.org/10.1111/j.1365-313X.2012.04981.x
- Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. https://doi.org/10.1016/j.cell.2006.02.008
- Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E. and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250. https://doi.org/10.1126/science.266.5188.1247
- Dempsey, D. A. and Klessig, D. F. 2012. SOS: too many signals for systemic acquired resistance? Trends Plant Sci. 17:538-545. https://doi.org/10.1016/j.tplants.2012.05.011
- Falk, A., Feys, B. J., Frost, L. N., Jones, J. D., Daniels, M. J. and Parker, J. E. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. U. S. A. 96: 3292-3297. https://doi.org/10.1073/pnas.96.6.3292
- Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
- Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R. and Yano, M. 2015. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 5:7773. https://doi.org/10.1038/srep07773
- Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756. https://doi.org/10.1126/science.261.5122.754
- Gao, Q. M., Kachroo, A. and Kachroo, P. 2014. Chemical inducers of systemic immunity in plants. J. Exp. Bot. 65:1849-1855. https://doi.org/10.1093/jxb/eru010
- Helliwell, E. E. and Yang, Y. 2013. Molecular strategies to improve rice disease resistance. Methods Mol. Biol. 956:285-309. https://doi.org/10.1007/978-1-62703-194-3_21
- Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M. and Glazebrook, J. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. U. S. A. 96:13583-13588. https://doi.org/10.1073/pnas.96.23.13583
- Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
- Jung, H. W., Kim, K. D. and Hwang, B. K. 2005. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361-373. https://doi.org/10.1007/s00425-004-1461-9
- Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324:89-91. https://doi.org/10.1126/science.1170025
- Karimi, M., Inze, D. and Depicker, A. 2002. Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7:193-195. https://doi.org/10.1016/S1360-1385(02)02251-3
- Lee, M. W., Lu, H., Jung, H. W. and Greenberg, J. T. 2007. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete Avr-Rpt2. Mol. Plant-Microbe Interact. 20:1192-1200. https://doi.org/10.1094/MPMI-20-10-1192
- Liu, J., Wang, X., Mitchell, T., Hu, Y., Liu, X., Dai, L. and Wang, G. L. 2010. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol. Plant Pathol. 11:419-427. https://doi.org/10.1111/j.1364-3703.2009.00607.x
- Liu, W., Liu, J., Triplett, L., Leach, J. E. and Wang, G. L. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52:213-241. https://doi.org/10.1146/annurev-phyto-102313-045926
- Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
- Loake, G. and Grant, M. 2007. Salicylic acid in plant defence: the players and protagonists. Curr. Opin. Plant Biol. 10:466-472. https://doi.org/10.1016/j.pbi.2007.08.008
- Macho, A. P. and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263-272. https://doi.org/10.1016/j.molcel.2014.03.028
- Malinovsky, F. G., Fangel, J. U. and Willats, W. G. 2014. The role of the cell wall in plant immunity. Front. Plant Sci. 5:178.
- Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R. and Latif, M. A. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol. Biol. Rep. 40:2369-2388. https://doi.org/10.1007/s11033-012-2318-0
- Navarova, H., Bernsdorff, F., Doring, A. C. and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123-5141. https://doi.org/10.1105/tpc.112.103564
- Nawrath, C. and Metraux, J. P. 1999. Salicylic acid inductiondeficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404.
- Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. https://doi.org/10.1093/nar/29.9.e45
- Rathjen, J. P., Chang, J. H., Staskawicz, B. J. and Michelmore, R. W. 1999. Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. EMBO J. 18:3232-3240. https://doi.org/10.1093/emboj/18.12.3232
- Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. https://doi.org/10.1105/tpc.8.10.1809
- Shin, S. H., Pak, J. H., Kim, M. J., Kim, H. J., Lee, J. H., Kim, D. H., Choi, H. K., Kang, K. H., Jeong, J. U., Kang, C. S., Jung, H. W. and Chung, Y. S. 2012. Cloning and characterization of Pathogenesis-related gene 10a (OgPR10a) derived from wild rice (Oryza grandiglumis). Korean J. Breed. Sci. 44:4-10.
- Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P. and Raskin, I. 1995. Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633-639. https://doi.org/10.1104/pp.108.2.633
- Song, J. T., Lu, H. and Greenberg, J. T. 2004a. Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, ABERRANT GROWTH AND DEATH2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. Plant Cell 16:353-366. https://doi.org/10.1105/tpc.019372
- Song, J. T., Lu, H., McDowell, J. M. and Greenberg, J. T. 2004b. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40:200-212. https://doi.org/10.1111/j.1365-313X.2004.02200.x
- Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89-100. https://doi.org/10.1038/nri3141
- Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J. and Greenberg, J. T. 2006. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol. Microbiol. 62:26-44. https://doi.org/10.1111/j.1365-2958.2006.05350.x
Cited by
- -hydroxypipecolic acid: an integral immune-activating pathway in plants vol.96, pp.1, 2018, https://doi.org/10.1111/tpj.14037