DOI QR코드

DOI QR Code

A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae

  • Jung, Ga Young (Department of Genetic Engineering, Dong-A University) ;
  • Park, Ju Yeon (Department of Applied Biosciences, Dong-A University) ;
  • Choi, Hyo Ju (Department of Genetic Engineering, Dong-A University) ;
  • Yoo, Sung-Je (Department of Genetic Engineering, Dong-A University) ;
  • Park, Jung-Kwon (Department of Applied Biosciences, Dong-A University) ;
  • Jung, Ho Won (Department of Genetic Engineering, Dong-A University)
  • Received : 2015.10.08
  • Accepted : 2016.04.01
  • Published : 2016.08.01

Abstract

ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

Keywords

References

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, London, UK.
  2. Arnaud, D. and Hwang, I. 2015. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant 8:566-581. https://doi.org/10.1016/j.molp.2014.10.012
  3. Buchmann, K. 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5:459.
  4. Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63. https://doi.org/10.1016/S0092-8674(00)81858-9
  5. Cecchini, N. M., Jung, H. W., Engle, N. L., Tschaplinski, T. J. and Greenberg, J. T. 2015. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol. Plant-Microbe Interact. 28:455-466. https://doi.org/10.1094/MPMI-06-14-0187-R
  6. Century, K. S., Holub, E. B. and Staskawicz, B. J. 1995. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. U. S. A. 92:6597-6601. https://doi.org/10.1073/pnas.92.14.6597
  7. Chanda, B., Xia, Y., Mandal, M. K., Yu, K., Sekine, K. T., Gao, Q. M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43:421-427. https://doi.org/10.1038/ng.798
  8. Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J. and Shah, J. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 71:161-172. https://doi.org/10.1111/j.1365-313X.2012.04981.x
  9. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. https://doi.org/10.1016/j.cell.2006.02.008
  10. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E. and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247-1250. https://doi.org/10.1126/science.266.5188.1247
  11. Dempsey, D. A. and Klessig, D. F. 2012. SOS: too many signals for systemic acquired resistance? Trends Plant Sci. 17:538-545. https://doi.org/10.1016/j.tplants.2012.05.011
  12. Falk, A., Feys, B. J., Frost, L. N., Jones, J. D., Daniels, M. J. and Parker, J. E. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. U. S. A. 96: 3292-3297. https://doi.org/10.1073/pnas.96.6.3292
  13. Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
  14. Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R. and Yano, M. 2015. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 5:7773. https://doi.org/10.1038/srep07773
  15. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756. https://doi.org/10.1126/science.261.5122.754
  16. Gao, Q. M., Kachroo, A. and Kachroo, P. 2014. Chemical inducers of systemic immunity in plants. J. Exp. Bot. 65:1849-1855. https://doi.org/10.1093/jxb/eru010
  17. Helliwell, E. E. and Yang, Y. 2013. Molecular strategies to improve rice disease resistance. Methods Mol. Biol. 956:285-309. https://doi.org/10.1007/978-1-62703-194-3_21
  18. Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M. and Glazebrook, J. 1999. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. U. S. A. 96:13583-13588. https://doi.org/10.1073/pnas.96.23.13583
  19. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  20. Jung, H. W., Kim, K. D. and Hwang, B. K. 2005. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361-373. https://doi.org/10.1007/s00425-004-1461-9
  21. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324:89-91. https://doi.org/10.1126/science.1170025
  22. Karimi, M., Inze, D. and Depicker, A. 2002. Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7:193-195. https://doi.org/10.1016/S1360-1385(02)02251-3
  23. Lee, M. W., Lu, H., Jung, H. W. and Greenberg, J. T. 2007. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete Avr-Rpt2. Mol. Plant-Microbe Interact. 20:1192-1200. https://doi.org/10.1094/MPMI-20-10-1192
  24. Liu, J., Wang, X., Mitchell, T., Hu, Y., Liu, X., Dai, L. and Wang, G. L. 2010. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol. Plant Pathol. 11:419-427. https://doi.org/10.1111/j.1364-3703.2009.00607.x
  25. Liu, W., Liu, J., Triplett, L., Leach, J. E. and Wang, G. L. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52:213-241. https://doi.org/10.1146/annurev-phyto-102313-045926
  26. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  27. Loake, G. and Grant, M. 2007. Salicylic acid in plant defence: the players and protagonists. Curr. Opin. Plant Biol. 10:466-472. https://doi.org/10.1016/j.pbi.2007.08.008
  28. Macho, A. P. and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263-272. https://doi.org/10.1016/j.molcel.2014.03.028
  29. Malinovsky, F. G., Fangel, J. U. and Willats, W. G. 2014. The role of the cell wall in plant immunity. Front. Plant Sci. 5:178.
  30. Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Asfaliza, R. and Latif, M. A. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol. Biol. Rep. 40:2369-2388. https://doi.org/10.1007/s11033-012-2318-0
  31. Navarova, H., Bernsdorff, F., Doring, A. C. and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123-5141. https://doi.org/10.1105/tpc.112.103564
  32. Nawrath, C. and Metraux, J. P. 1999. Salicylic acid inductiondeficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404.
  33. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45. https://doi.org/10.1093/nar/29.9.e45
  34. Rathjen, J. P., Chang, J. H., Staskawicz, B. J. and Michelmore, R. W. 1999. Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. EMBO J. 18:3232-3240. https://doi.org/10.1093/emboj/18.12.3232
  35. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  36. Shin, S. H., Pak, J. H., Kim, M. J., Kim, H. J., Lee, J. H., Kim, D. H., Choi, H. K., Kang, K. H., Jeong, J. U., Kang, C. S., Jung, H. W. and Chung, Y. S. 2012. Cloning and characterization of Pathogenesis-related gene 10a (OgPR10a) derived from wild rice (Oryza grandiglumis). Korean J. Breed. Sci. 44:4-10.
  37. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P. and Raskin, I. 1995. Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633-639. https://doi.org/10.1104/pp.108.2.633
  38. Song, J. T., Lu, H. and Greenberg, J. T. 2004a. Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, ABERRANT GROWTH AND DEATH2 and AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. Plant Cell 16:353-366. https://doi.org/10.1105/tpc.019372
  39. Song, J. T., Lu, H., McDowell, J. M. and Greenberg, J. T. 2004b. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40:200-212. https://doi.org/10.1111/j.1365-313X.2004.02200.x
  40. Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89-100. https://doi.org/10.1038/nri3141
  41. Vinatzer, B. A., Teitzel, G. M., Lee, M. W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J. and Greenberg, J. T. 2006. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol. Microbiol. 62:26-44. https://doi.org/10.1111/j.1365-2958.2006.05350.x

Cited by

  1. -hydroxypipecolic acid: an integral immune-activating pathway in plants vol.96, pp.1, 2018, https://doi.org/10.1111/tpj.14037