• Title/Summary/Keyword: genetically modified plant

Search Result 109, Processing Time 0.027 seconds

Microbial Communities in Rice Paddy Soils Following Cultivation of Genetically Modified Leaf Folder-resistant Rice Plants (혹명나방 저항성벼 재배 논토양의 미생물상)

  • Kwon, Jang-Sik;Noh, Hyung-Jun;Suh, Jang-Sun;Shin, Kong-Sik;Kweon, Soon-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • The study was performed to investigate the property of rhizosphere microorganisms, and community structure during GMO, and Non-GMO rice cultivation. In the dilution plate technique, there were no significant differences in microbial populations of rhizosplane with genetically modified, and non-genetically modified rice cultivation, and rhizosphere were also the same results. Dominant bacterial genera were Afipia 12.5%, Spingomonas 10.0%, Ramlibacter 10.0%, Mycobacterium 7.5%, and Tetrasphaera 7.5% in rhizosphere soil of genetically modified rice plant, while Afipia 7.3%, Spingomonas 12.2%, Ramlibacter 7.3%, Mycobacterium 17.1%, Tetrasphaera 14.6% in non-genetically modified cultivated at Suwon test fields in 2006. Majorgenera isolated from root surface cultivated in Yesan fields were Arthrobacter 12.7% in rhizoplane of genetically modified plant, and Burkholderia 22.2% of non-genetically modified plant in 2007, Paucimonas 26.6% of genetically modified plant, Chryseobacterium 15.4% of non-genetically modified plant in 2008. Also the microbial communities in rhizosphere soils of genetically modified, and non-genetically modified plants were characterized using phospholipid fatty acid, and denaturing gradient gel electrophoresis. The phospholipid fatty acid profiles of soils in this condition showed different pattern, but did not show significant differences between soils cultivated with genetically or non-genetically modified rice plants.

Commercialization of Genetically Modified Ornamental Plants

  • Chandler Stephen F.
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.69-77
    • /
    • 2003
  • The ornamental industry encompasses cut flower, pot plant, turfgrass and nursery stock production and is an important part of the agricultural sector. As internationally traded commodities, cut flowers and plants are an integral part of the economy of a number of developing countries in South America, the Caribbean and Africa. Genetic modification (GM) is a tool with great potential to the ornamental horticulture industry. The rapid progress in our knowledge of plant molecular biology can accelerate the breeding ornamental plants using recombinant DNA technology techniques. Not only is there the possibility of creating new, novel products the driver of the industry but also the potential to develop varieties requiring less chemical and energy inputs. As an important non-food agricultural sector the use of genetically modified (GM) ornamental crops may also be ideal for the intensive farming necessary to generate pharmaceuticals and other useful products in GM plants. To date, there are only a few ornamental GM products in development and only one, a carnation genetically modified for flower colour, in the marketplace. International Flower Developments, a joint venture between Florigene Ltd. in Australia and Suntory Ltd. of Japan, developed the GM carnations. These flowers are currently on sale in USA, Japan and Australia. The research, development and commercialization of these products are summarized. The long term prospects for ornamental GM products, like food crops, will be determined by the regulatory environment, and the acceptance of GM products in the marketplace. These critical factors will be analysed in the context of the current legislative environment, and likely public and industry opinion towards ornamental genetically modified organisms (GMO's).

Commercialization of Genetically Modified Ornamental Plants

  • Chandler, Stephen F.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.39-48
    • /
    • 2003
  • The ornamental industry encompasses cut flower, pot plant, turfgrass and nursery stock production and is an important part of the agricultural sector. As internationally traded commodities, cut flowers and plants are an integral part of the economy of a number of developing countries in South America, the Caribbean and Africa. Genetic modification (GM) is a tool with great potential to the ornamental horticulture industry. The rapid progress in our knowledge of plant molecular biology can accelerate the breeding ornamental plants using recombinant DNA technology techniques. Not only is there the possibility of creating new, novel products the driver of the industry but also the potential to develop varieties requiring less chemical and energy inputs. As an important non-food agricultural sector the use of genetically modified (GM) ornamental crops may also be ideal for the intensive farming necessary to generate pharmaceuticals and other useful products in GM plants. To date, there are only a few ornamental GM products in development and only one, a carnation genetically modified for flower colour, in the marketplace. International Flower Developments, a joint venture between Florigene Ltd. in Australia and Suntory Ltd.of Japan, developed the GM carnations. These flowers are currently on sale in USA, Japan and Australia. The research, development and commercialisation of these products are summarised. The long term prospects for ornamental GM products, like food crops, will be determined by the regulatory environment, and the acceptance of GM products in the marketplace. These critical factors will be analysed in the context of the current legislative environment, and likely public and industry opinion towards ornamental genetically modified organisms (GMO's).

  • PDF

Current status of development and event-dependent genetic analysis of genetically modified crops in Korea (우리나라의 유전변명작물 개발 현황 및 사상-종속 유전 분석)

  • Jeong, Soon-Chun
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Development of genetically modified crops using modern biotechnology is regarded as a promising way to combat with ever-increasing human population. Korea attempted to develop its own genetically modified crops essentially for the past 20 years, however no example of commercialization has been announced. Here, I briefly summarized current status of development and risk assessment of genetically modified crops in Korea. Then, I attempted to identify a death valley in the process of commercialization. Based on experience of risk assessment of 15 different genetically modified organisms, I suggested that lack of the screening of elite events may serve as a death valley.

Potential Risk of Genetically Modified Plants in Korean Ecosystem: a Proposal for Unintended Effects on Korean Wild Species

  • Shim, Sang-In;Lee, Byung-Moo;Kang, Byeung-Hoa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • Introgression from genetically modified plants (GMPs) may be dependent on the genetic similarity to wild relative plants. In Korea, many wild plant species are botanically related to the cultivated plants that have a potential to be genetically transformed. The controversy for hazards of GMPs is continuing because the studies on gene flow or introgression are little. Based on the systematic criteria, we have surveyed Korean wild plant species that showed the similarity to cultivating crops. The consideration for feasibility of genetic pollution (introgression of transgene) is necessary for the successful accomplishment in the practical use of GMPs. Although the detrimental effects of GMPs on wild relatives have not been clearly verified, Korean wild plant species related to crop plant (potential GMP) have to be investigated with respect to the introgression. Korean flora consists of ca. 5,500 species. Among them, 1,448 species are classified as weed species (966 native, 325 naturalized, and 167 escaped ones), which is vulnerable to GMPs in term of introgression. We suggested the principal Korean wild plants related to major crops that might be affected by GMPs via introgression. The investigated species herein are selected based on the morphological and phenological relationship. It is necessary to verify the genetic relationship between cultivated plants and wild relatives sing more precise molecular techniques, which provide the information of likelihood for the introgression of transgene.

  • PDF

Scientific considerations for the biosafety of the off-target effects of gene editing in crops (유전자교정작물 내 비의도적 돌연변이의 안전성 논란에 관한 과학적 고찰)

  • Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • The number of commercially approved gene-edited crops is gradually increasing, and in South Korea, it has led to intense investment in gene-edited crop development to increase international competitiveness. However, as with genetically modified crops, the safety of gene-edited crops regarding unexpected risks for humans and the environment is subject to an ongoing debate. In particular, unintentional "off-target effects" have become the center of controversy. In this review, we discuss typical plant characteristics (including somatic variation and ploidy), the extent of various off-target effects in genetically modified crops generated via horizontal transfer in nature, and the off-target effects in commercial genetically modified crops. We conclude that most off-target effects possibly occurring in gene-edited crops are not expected to be critically harmful to humans or the environment. Therefore, existing regulation for genetically modified crops should be enough for the risk assessment of gene-edited crops.

A Simple and Reliable Method for Preparation of Cross-Contamination-Free Plant Genomic DNA for PCR-Based Detection of Transgenes

  • Hwang, Seon-Kap;Kim, Young-Mi
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.537-540
    • /
    • 2000
  • A simplified but reliable method was developed for the polymerase chain reaction (PCR)-based detection of genetically modified (GM) plants. The modified CTAB (mCTAB) method enabled us to prepare a high quality of genomic DNA from several hundred plant leaf samples in one day. Using DNA samples prepared from seven dicots and two monocots, approximately 1.75-kb regions spanning 17 S to 25 S ribosomal RNA genes were successfully amplified in a 2X PCR pre-mix containing BLOTTO. Further fidelity assessment of the mCTAB method by PCR analysis with Roundup Ready soybean (RRS) and non-RRS plants showed that the DNA samples prepared alternately from each of two lines were evidently free of cross-contamination. These results demonstrate that the mCTAB method is highly recommended for the rapid detection of transgenes in large numbers of leaf samples from diverse transgenic plants.

  • PDF

Karyotype Analyses of a Rice Cultivar 'Nakdong' and its Four Genetically Modified Events by Conventional Staining and Fluorescence in situ Hybridization

  • Jeon, Eun Jin;Ryu, Kwang Bok;Kim, Hyun Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.4
    • /
    • pp.252-259
    • /
    • 2011
  • Conventional staining and fluorescence in situ hybridization (FISH) karyotypes of the non-genetically modified (GM) parental rice line, 'Nakdong' (Oryza sativa L. japonica), and its four GM rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1), and LS28 ${\times}$ Cry1Ac1 (events L/C1-1-3-1 and L/C1-3-1-1) were analyzed using 5S and 45S rDNAs as probes. Both parental and transgenic lines were diploids (2n=24) with one satellite chromosome pair. The lengths of the prometaphase chromosomes ranged from 1.50 to $6.30{\mu}m$. Four submetacentric and eight metacentric pairs comprised the karyotype of 'Nakdong' and its four GM lines. One pair of 5S rDNA signals was detected near the centromeric region of chromosome g in both the parental and transgenic lines. The 45S rDNA signals were detected on the secondary constrictions of the satellite chromosome pair in both the parental and transgenic lines. There was no significant difference in chromosome size, length, and composition between 'Nakdong' and its four GM lines. This research was conducted as a preliminary study for chromosomal detection of transgenes in GM rice lines and would be useful for their breeding programs.

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.