• 제목/요약/키워드: stable cells

Search Result 972, Processing Time 0.026 seconds

Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping

  • Kim, Soo-hyun;Lim, Kwang-il
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.339-345
    • /
    • 2017
  • Retroviral and lentiviral vectors are mostly pseudotyped and often purified and concentrated via ultracentrifugation. In this study, we quantified and compared the stabilities of retroviral [murine leukemia virus (MLV)-based] and lentiviral [human immunodeficiency virus (HIV)-1-based] vectors pseudotyped with relatively mechanically stable envelope proteins, vesicular stomatitis virus glycoproteins (VSVGs), and the influenza virus WSN strain envelope proteins against ultracentrifugation. Lentiviral genomic and functional particles were more stable than the corresponding retroviral particles against ultracentrifugation when pseudotyped with VSVGs. However, both retroviral and lentiviral particles were unstable when pseudotyped with the influenza virus WSN strain envelope proteins. Therefore, the stabilities of pseudotyped retroviral and lentiviral vectors against ultracentrifugation process are a function of not only the type of envelope proteins, but also the type of viral internal core (MLV or HIV-1 core). In addition, the fraction of functional viral particles among genomic viral particles greatly varied at times during packaging, depending on the type of envelope proteins used for pseudotyping and the viral internal core.

MRI-Guided Gadolinium Neutron Capture Therapy

  • Ji-Ae Park;Jung Young Kim;Hee-Kyung Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.113-118
    • /
    • 2022
  • Gadolinium neutron capture therapy (Gd-NCT) is a precision radiation therapy that kills cancer cells using the neutron capture reaction that occurs when 157Gd hits thermal neutrons. 157Gd has the highest thermal neutron capture cross section of 254,000 barns among stable isotopes in the periodic table. Another stable isotope, 155Gd, also has a high thermal neutron trapping area (~ 60,700 barns), so gadolinium that exists in nature can be used as a Gd-NCT drug. Gd-NCT is a mixed kinetic energy of low-energy and high-energy ionizing particles, which can be uniformly distributed throughout the tumor tissue, thereby solving the disadvantage of heterogeneous dose distribution in tumor tissue. The Gd complexes of small-sized molecule are widely used as contrast agents for magnetic resonance imaging (MRI) in clinical practice. Therefore, these compounds can be used not only for diagnosis but also therapy when considering the concept of Gd-NCT. This multifunctional trial can look forward to new medical advance into NCT clinical practices. In this review, we introduce gadolinium compounds suitable for Gd-NCT and describe the necessity of image guided Gd-NCT.

Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

  • Babu, Neerupudi Kishore;Satyanarayana, Botcha;Balakrishnan, Kesavapillai;Rao, Tamanam Raghava;Rao, Gudapaty Seshagiri
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • A repeated batch fermentation system was used to produce ethanol using $Saccharomyces$ $cerevisiae$ strain (NCIM 3640) immobilized on sugarcane ($Saccharum$ $officinarum$ L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65-76.28 g/L in an average value) and ethanol productivities (about 2.27-2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9-3.25 g/L) with conversions ranging from 98.03-99.43%, showing efficiency 91.57-95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations.

Differential Gene Expression in GPR40-Overexpressing Pancreatic ${\beta}$-cells Treated with Linoleic Acid

  • Kim, In-Su;Yang, So-Young;Han, Joo-Hui;Jung, Sang-Hyuk;Park, Hyun-Soo;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.141-149
    • /
    • 2015
  • "G protein-coupled receptor 40" (GPR40), a receptor for long-chain fatty acids, mediates the stimulation of glucose-induced insulin secretion. We examined the profiles of differential gene expression in GPR40-activated cells treated with linoleic acid, and finally predicted the integral pathways of the cellular mechanism of GPR40-mediated insulinotropic effects. After constructing a GPR40-overexpressing stable cell line (RIN-40) from the rat pancreatic ${\beta}$-cell line RIN-5f, we determined the gene expression profiles of RIN-5f and RIN-40. In total, 1004 genes, the expression of which was altered at least twofold, were selected in RIN-5f versus RIN-40. Moreover, the differential genetic profiles were investigated in RIN-40 cells treated with $30{\mu}M$ linoleic acid, which resulted in selection of 93 genes in RIN-40 versus RIN-40 treated with linoleic acid. Based on the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG, http://www.genome.jp/kegg/), sets of genes induced differentially by treatment with linoleic acid in RIN-40 cells were found to be related to mitogen-activated protein (MAP) kinase- and neuroactive ligand-receptor interaction pathways. A gene ontology (GO) study revealed that more than 30% of the genes were associated with signal transduction and cell proliferation. Thus, this study elucidated a gene expression pattern relevant to the signal pathways that are regulated by GPR40 activation during the acute period. Together, these findings increase our mechanistic understanding of endogenous molecules associated with GPR40 function, and provide information useful for identification of a target for the management of type 2 diabetes mellitus.

Effect of stack configuration on the performance of 10W PEMFC stack (10W급 고분자 전해질 연료전지 스택의 구조적 차이에 다른 운전 특성 비교)

  • Yim, Sung-Dae;Kim, Byung-Ju;Sohn, Young-Jun;Yoon, Young-Gi;Yang, Tae-Hyun;Kim, Chang-Soo;Kim, Young-Chai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.286-286
    • /
    • 2009
  • A small PEM fuel cell has two different stack configurations such as active and passive stacks. The active stack has a distintion of high power density although it makes system complex by using alr blower and related BOPs resulting in large system volume. On the contrary, passive stack has an advantage of compact system because it doesn't need air supplying devices although it reveals relatively low stack power density. In this study we fabricated two 10W PEMFC stacks with different stack configurations, active and passive stacks, and tested their performance and stability. The active stack consists of 13cells with an active area of $5cm^2$. The passive stack has 12cells with an active area of $16cm^2$. When we compared the stack performance of those stacks, the active stack showed higher power density compared to the passive stack, particularly at high voltage regions. However, at low voltage and high current regions, the passive stack performance was comparable to the active stack. The stack stability was largely dependent on the fuel humidity, particularly for active stack. At low humidity conditions, the active stack performance was decreased continuously and the cell voltage distribution was not uniform showing seriously low cell voltage at center cells mainly due to the cell drying. The passive stack showed relatively stable behavior at low humidity and the stack performance was largely dependent on the atmospheric conditions.

  • PDF

Purification of Chitinase from an Antagonistic Bacterium Bacillus sp.7079 and Pro-Inflammatory Cytokine Gene Expression by PCTC

  • Han, Ok-Kyung;Lee, Eun-Tag;Lee, Young-Sun;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2003
  • Chitinase was purified from an antagonistic bacterium Bacillus sp. 7079 by ammonium sulfate precipitation, QAE-Sephadex anion exchange chromatography, Sephadex G-100 gel filtration, and SP-Sephadex cation exchange chromatography. The molecula. weight of purified chitinase (PC-1) was approximately 66.5 kDa on SDS-PACE. PC-1 exhibited optimum pH and temperature of pH 7.5 and $45^{\circ}C$, respectively. More than $80\%$ of PC-1 was stable at pH 5.0 to 9.0, and more than $90\%$ at $40^{\circ}C$. $Fe^2+\;and\;Ca^2+$ inhibited the chitinase activity about $20\%$, and EDTA and p-CMB by about $30\%$, whereas $Ag^+$ inhibited the activity up to $65\%$. The $K_m$ value of PC-1 was 1.215 mg/ml with colloidal chitin as a substrate. We also investigated the effect of PC-1 treated chitin (PCTC) on the pro-inflammatory cytokine gene expression in macrophage RAW 264.7 cells. The expression of IL-$1{\alpha}$ and IL-$1{\beta}$ mRNA gene was investigated using reverse transcriptase polymerase chain reaction (RT-PCR). IL-$1{\alpha}$ and IL-$1{\beta}$ mRNA were induced by the treatment of PCTC and chitin only in RAW 264.7 cells. These expressions were induced as early as 2 h and sustained up to 24 h in RAW 264.7 cells. IL-$1{\alpha}$ and IL-$1{\beta}$ mRNA were more strongly expressed by the treatment of PCTC than chitin treatment alone in RAW 264.7 cells.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Analysis of Telomerase Activity by HPV E6/E7 Expression in SW13

  • Kim, Young-Kwon;Park, Yuk-Pheel
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.399-403
    • /
    • 2006
  • Cervical cancer is one of the most prevalent cancers developed in women worldwide, and human papillomavirus (HPV) type 16 is the most common agent linked to human cerivical carcinoma. Viral oncogenes E6 and E7 are selectively ratined and expressed in carcinoma cells infected with human papillomavirus type 16 and cooperated with each other in immortalization and transformation of primary keratinocytes. Because of HPV oncogenesis mechanism was not completely solved, the more studies be required thoroughly. In the present study, to investigate the telomere independent role of telomerase in HPV oncogenesis, we constructed the E6 mutant, E7, E6/E7 and hTERT over-expressed stable cells with a telomerase negative cell line, SW13. Expressions of Inserted genes were measured by RT-PCR. E6, E7 and hTERT genes were well expressed in each cell lines comparing with the control groups. By analyzing the cell morphology under the microscope, hTERT clone size was a more smaller than the mock control but oncogene expressed clones were slightly lengthened the marginal region. In addition, hTERT cells has also, a tendency of brief dividing time compared to the mock control. To determine whether telomerase activity associated with a HPV oncogenesis by oncoprotein expression, we performed the PCR based TRAP assay and Northern blot analysis. In TRAP assay data, telomerase activities in hTERT and oncogene clones were more increased than the mock control. In addition, SW13/ E6/E7 cells appeared a extremely increased activity than any other clones. Induced TERT mRNA by E6/E7 wasn't, however, detected in Northern blotting. In conclusion, these findings suggest that telomerase activity closely associated the HPV oncogenesis and E6/E7 co-expression is a most important factor of telomerase activity.

  • PDF

Effective Electrode Structure for the Stability of Alkaline Hydrazine Fuel Cells (알칼라인 하이드라진 연료전지 운전 안정성을 위한 전극 구조)

  • Uhm, Sunghyun;Hong, Sujik;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.652-658
    • /
    • 2019
  • Direct hydrazine fuel cells (DHFCs) have been considered to be one of the promising fuel cells because hydrazine as a liquid fuel possesses several advantages such as no emission of CO2, relatively high energy density and catalytic activity over platinum group metal (PGM)-free anode catalysts. Judging from plenty of research works, however, regarding key components such as electrocatalysts as well as their physicochemical properties, it becomes quite necessary to understand better the underlying processes in DHFCs for the long term stability. Herein, we highlight recent studies of DHFCs in terms of a systematic approach for developing cost-effective and stable anode catalysts and electrode structures that incorporate mass transport characteristics of hydrazine, water and gas bubbles.

Continuous Production of Sorbitol with Zymomonas mobilis in a Packed Bed Reactor (Zymomonas mobilis에 의한 Packed Bed Reactor를 이용한 연속적인 sorbitol의 형성)

  • 장기효;김영복장현수전억한
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.58-64
    • /
    • 1996
  • The purpose of this study is to develop a continuous process for sorbitol production using Zymomonas mobilis immobilized in K-carra-geenan. The glutaraldehyde cross-linking of toluene-treated cells immobilized in alginate or chitin showed high enzyme stability for long period. However, loss of enzyme activity was observed at 23% during 210h. In order to investigate the stability of glucose-fructose oxidoreductase of cethyltrimethylammoniumbromide (CT AB) treated cells, the long term continuous process was carried out with Z. mobilis immobilized in K-carrageenan in the continuous stirred tank reactor(CSTR) and the packed bed reactor. The continuous production of sorbitol with the immobilized CT AB permeabilized cells in packed bed reactor was more stable than in CSTR. Two stage continuous process with CT AB treated cells of Z. mobilis immobilized in K-carrageenan was carried out at various dilution rates. At the first stage, the productivity was increased up to 15 g/ $\ell$ -h as dilution rate increased and decreased over 0.32$h^{-1}$ of dilution rate. Similarly, maximum productivity obtained at the second stage was 22g/$\ell$ -h at 0.32$h^{-1}$

  • PDF