• Title/Summary/Keyword: stability function

Search Result 2,697, Processing Time 0.023 seconds

The Effect of Task-oriented Training on Mobility Function, Postural Stability in Children with Cerebral Palsy

  • Kim, Ji-Hye;Choi, Young-Eun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 2017
  • PURPOSE: The purpose of this study is to examine how task-oriented training focused on lower extremity strengthening can affect mobility function and postural stability. METHODS: The study's subjects included 10 children with cerebral palsy: 7 girls and 3 boys between the ages of 4 and 9 whose Gross Motor Functional Classification System (GMFCS) level was I or II. Their functional mobility was gauged using the Gross Motor Function Measurement (GMFM), and their postural stability was evaluated using a force platform. Participants received task-oriented training focused on lower extremity strengthening for 5 weeks. The study used a paired t-test to investigate the difference in mobility function and postural stability of children with cerebral palsy before and after the lower extremity strengthening exercise. RESULTS: The GMFM dimensions D (standing) (p<.02) and E (walking) (p<.001) improved significantly between the pre-test and post-test. A significant increase in the posturographic center of pressure (CoP) shift and surface area of the CoP were found overall between the pre-test and post-test (p<.001). CONCLUSION: The present study provides evidence that an 8-week task-oriented training focused on strengthening the lower extremities is an effective and feasible strategy for improving the mobility function and postural stability of children with cerebral palsy.

The Development of Equivalent System Technique for Deriving an Energy Function Reflecting Transfer Conductances (선로저항을 반영하는 에너지함수 유도를 위한 등가시스템 기법의 개발)

  • Moon, Young-Hyun;Cho, Byoung-Hoon;Roh, Tae-Hoon;Choi, Byoung-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1175-1182
    • /
    • 1999
  • This paper shows that a well-defined energy function can be developed to reflect the transfer conductances for multi-machine power systems under an assumption that all transmission lines have uniform R/X rations. The energy function is derived by introducing a pure reactive equivalent system for the given system. In this study, a static energy function reflecting transfer conductances is also derived as well as the transient energy function. The proposed static energy function is applied to voltage stability analysis and tested for various sample systems. The test results show that the accuracy of voltage stability analysis can be considerable improved by reflecting transfer conductances into the energy function.

  • PDF

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

Asymptotic Stability of Discrete Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun;Kang, Chang-Ik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.580-585
    • /
    • 1999
  • This paper deals with the stability of discrete time linear systems with time varying delays in state. In this paper, the magnitude of time-varying delays is assumed to be upper-bouded. The stability of discrete time linear systems with time-varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

ON THE STABILITY OF FUNCTIONAL EQUATIONS IN n-VARIABLES AND ITS APPLICATIONS

  • KIM, GWANG-HUI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.321-338
    • /
    • 2005
  • In this paper we investigate a generalization of the Hyers-Ulam-Rassias stability for a functional equation of the form $f(\varphi(X))\;=\;\phi(X)f(X)$, where X lie in n-variables. As a consequence, we obtain a stability result in the sense of Hyers, Ulam, Rassias, and Gavruta for many other equations such as the gamma, beta, Schroder, iterative, and G-function type's equations.

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Eloe, Paul;Jonnalagadda, Jaganmohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.977-992
    • /
    • 2019
  • Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

The Effects of Core Stability on Postural Control, Balance and Upper Motor Function in Patients with Stroke (CORE 안정성 훈련이 뇌졸중 환자의 자세조절, 균형 및 상지기능에 미치는 효과)

  • Lee, Byoung-Hee;Kim, Seong-Yeol;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.3
    • /
    • pp.69-80
    • /
    • 2009
  • Objectives : The purpose of this study was to evaluate the effects of core stability training on postural control and balance of hemiplegia patients who are difficult to control posture due to stroke. Methods : Subjects of the study were consisted of 25 adult hemiplegia patients(experimental 12, control 13) who were receiving rehabilitation therapy in hospital. Its group had a core stability training program by a physical therapists for 40 minutes, five times a week for nine-week period. Measurements of postural assessment scale for stroke(PASS), berg balance scale(BBS) and manual function test(MFT) were evaluated at initial presentation(pretest) and after completion of the each therapy program(posttest). Independent t-test and paired t-test was utilized to detect the mean difference between the groups. Results : Firstly, the result of PASS showed that postural control was significantly increased after the completion of core stability training(p<.01). Secondly, the result of BBS showed that balance control was significantly increased after the completion of core stability training(p<.01) and general physical therapy(p<.01). Lastly, the result of MFT showed that upper extremity's motor function was significantly increased after the completion of core stability training(p<.001). Conclusions : This study showed that core stability training is an effective treatment strategy on postural control, balance and upper extremity's motor function.