ON THE HYERS-ULAM-RASSIAS STABILITY OF THE GENERALIZED POLYNOMIAL FUNCTION OF DEGREE 2

  • Lee, Yang-Hi (Department of Mathematics Education Gongju National University of Education)
  • Received : 2009.03.12
  • Accepted : 2009.05.15
  • Published : 2009.06.30

Abstract

In this paper, we prove the stability of the functional equation $$\sum_{i=0}^3_3C_i(-1)^{3-i}f(ix+y)=0$$ in the sense of Th.M.Rassias on the punctured domain. Also, we investigate the superstability of the functional equation.

Keywords

Acknowledgement

Supported by : Gongju National University of Education

References

  1. P. W. Cholewa, Remarks on the stability of functional equations, Aeq. Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
  2. S. Czerwik, On the stability of the quadratic mapping in the normed space, Abh. Math. Sem. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  3. Z. Gajda On the stability of additive mappings, Internat. J. Math. and Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
  4. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi-mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  5. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  6. K.-W. Jun Y.-H. Lee, and J.-R. Lee, On the Stability of a new Pexider type functional equation, J. Ineq. and App. 2008 ID 816963, 22pages.
  7. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  8. Th. M. Rassias, Report of the 27th Internat. Symposium on Functional Equations, Aeq. Math. 39 (1990), 292-292. Problem 16, 2$^{o}$, Same report, p. 309
  9. F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890