Acknowledgement
Supported by : Gongju National University of Education
References
- P. W. Cholewa, Remarks on the stability of functional equations, Aeq. Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mapping in the normed space, Abh. Math. Sem. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- Z. Gajda On the stability of additive mappings, Internat. J. Math. and Math. Sci. 14 (1991), 431-434. https://doi.org/10.1155/S016117129100056X
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi-mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K.-W. Jun Y.-H. Lee, and J.-R. Lee, On the Stability of a new Pexider type functional equation, J. Ineq. and App. 2008 ID 816963, 22pages.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
-
Th. M. Rassias, Report of the 27th Internat. Symposium on Functional Equations, Aeq. Math. 39 (1990), 292-292. Problem 16, 2
$^{o}$ , Same report, p. 309 - F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890