• Title/Summary/Keyword: squirrel cage induction motor

Search Result 153, Processing Time 0.023 seconds

Analysis of Electromagnetic Field of Squirrel-cage Induction Motor Using 3D FEM Program (3차원 유한요소 프로그램을 이용한 농형 유도전동기의 전자계해석)

  • Lee, Suk-Won;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.327-329
    • /
    • 1999
  • 본 논문은 3차원 유한요소 프로그램을 이용한 농형 유도전동기의 정자장을 해석한 것이다. 2차원영역에서 해석하기 어려운 누설 인덕턴스를 3차원으로 해석하여 설계 파라미터 선정에 도움을 주고자 하였다. 유도전동기의 공극 자속밀도 분포와 누설 자속밀도 분포를 고찰하고 1[turn]의 coil에 의해 발생하는 자속의 량과 전동기 내부로 통과하는 자속의 량을 비교하여 누설 인덕턴스를 계산할 수 있었다.

  • PDF

Performance Evaluation of a Squirrel Cage Induction Motor by Using the High Temperature Superconductor (고온초전도체를 이용한 농형 유도전동기 특성시험)

  • Sim, Jung-Wook;Lim, Hyoung-Woo;Cha, Guee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.68-70
    • /
    • 2001
  • 고온 초전도체를 이용한 전력기기들은 변압기, 한류기 등의 정지기기의 형태와 회전기로서는 동기발전기, 벌크형 전동기, 동기전동기 등에 개발되고 있다. 이중 회전기에서 고온초전도를 이용한 유도전동기의 개발은 국내외적으로 미비한 실정이다. 본 논문에서는 고온초전도체를 이용한 농형 유도전동기의 제작 및 시험을 통하여 기본특성을 확인하였다.

  • PDF

Performance Evaluation of the HTS Bulk type Motor (고온초전도벌크형 전동기의 특성시험)

  • Sim, Jung-Wook;Lim, Hyoung-Woo;Cha, Guee-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.44-48
    • /
    • 2000
  • The high temperature superconducting bulk can be used as the rotor of an ac motor. This paper presents the fabrication and test results of a ac motor with HTS bulk rotor. The rotor of a conventional squirrel cage induction motor was replaced with cylinder type YBCO bulk. Height and outer diameter of the HTS bulk was 15mm and 46mm, respectively. Eddy current brake using aluminium disk was used to measure the torque of the HTS motor. No load test, locked rotor test and load test were performed to examine the characteristics of the HTS motor. Test results show the motor can rotate at synchronous speed without any special starting circuit. Maximum output power of the constructed HTS motor was 408W.

  • PDF

Wing Technique: A Novel Approach for the Detection of Stator Winding Inter-Turn Short Circuit and Open Circuit Faults in Three Phase Induction Motors

  • Ballal, Makarand Sudhakar;Ballal, Deepali Makarand;Suryawanshi, Hiralal M.;Mishra, Mahesh Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.208-214
    • /
    • 2012
  • This paper presents a novel approach based on the loci of instantaneous symmetrical components called "Wing Shape" which requires the measurement of three input stator currents and voltages to diagnose interturn insulation faults in three phase induction motors operating under different loading conditions. In this methodology, the effect of unbalanced supply conditions, constructional imbalances and measurement errors are also investigated. The sizes of the wings determine the loading on the motor and the travel of the wings while their areas determine the degree of severity of the faults. This approach is also applied to detect open circuit faults or single phasing conditions in induction motors. In order to validate this method, experimental results are presented for a 5 hp squirrel cage induction motor. The proposed technique helps improve the reliability, efficiency, and safety of the motor system and industrial plant. It also allows maintenance to be performed in a more efficient manner, since the course of action can be determined based on the type and severity of the fault.

An Analysis on the Performance of a Twin Stator Single-Phase Induction Manchine (단상 Twin sSator유도기의 특성해석에 관한 연구)

  • Young Moon Hwang
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.7-18
    • /
    • 1972
  • An analysis is made for the performance of twin stator single-phase induction machine having any movable asymmetrical angle of stator windings, with any symmetrical or asymmetrical magnetizing reactance and winding turn-ratio between two stators, provided that asymmetrical common squirrel cage rotor is utilized. This mechanism is a new type, which has the advantage of mading only not the performance prediction in applications as a single-phase electromagnetic driving mechanism but also the analysis prediction of single-phase induction motor with not in quadrature axis. The basis of the analyses are lead by Kron's primitive machine matrix and Morrill's double-revolving field concept. All the performances can be calculated from the test values and design details of the asymmetrical magnetizing reactance twin stator single-phase induction machine and verified by test. And its validity is still demonstrated to the pure twin stator single-phase induction machine.

  • PDF

Analysis of Squirrel Cage Induction Motors with Stator Winding Inter-turn Short Circuit (고정자 권선 단락에 따른 농형 유도전동기의 특성해석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Moon, Ji-Woo;Cho, Yun-Hyun;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.150-152
    • /
    • 2007
  • The stator faults yield asymmetrical operation of induction machines, such as irregular current, torque pulsation, increased losses and decreased average torque. So it is necessary to detect the stator faults and develope the monitoring system for detecting faults including vibration and noise. This paper describes the method to analysis the induction motors with the stator winding inter-turn short for investigation of the asymmetrical operation during normal and transient states. And a simple method is used for the simulation and analysis of the induction machines with stator asymmetries. Finally, simulation results, finite element analysis and experimental ones are presented. The results can be useful for real-time on-line monitoring of an induction motor.

  • PDF

Transient Analysis of Inverter-fed Three Phase Squirrel Cage induction Motor Using A Combined Method of Finite Element Method and Equivalent Circuit (유한요소법과 등가회로법의 결합을 이용한 인버터 구동 3상 농형 유도전동기의 과도 특성 해석)

  • Cho, Y.;Kwon, B.I.;Kim, J.W.;Kim, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.805-807
    • /
    • 2002
  • In this paper, a method for an accurate and fast transient analysis, which employs a single slot model for the rotor, is presented. The equivalent circuit parameters are extracted from a combined method of F. E. M and equivalent circuit on 1 slot rotor boundary condition. Two kinds of circuit parameters for each slip are applied to equivalent circuit controlled by variable-voltage variable- frequency. One is the constant parameters at rated speed, and the other is the parameters varying in accordance with slip-frequency. The computer characteristics of the suggested method for four-pole 1.5KW induction motor are compared with those of Equivalent circuit for the transient analysis.

  • PDF

Variation of electromagnetic noise of 3 phase induction motor between un-loaded and loaded running (3상 유도전동기의 무부하 및 부하 운전시 전자기 소음의 변화)

  • Kwon, B.H.;Ahn, J.R.;Chun, T.W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.9-11
    • /
    • 2008
  • When a squirrel cage induction motor is loaded, the electromagnetic noise can increase depending on the load current. It is due to the air gap harmonic fluxes from the rotor current induced during loading. This unfavorable noise can be anticipated by calculating the radial force waves in the air gap, vibration mode shapes of them, and stator core natural frequencies of each mode. With the experimental tests with the different rotor slot numbers, the variation of electromagnetic noise is studied between on-loaded and loaded running.

  • PDF

Influence of Thermal Expansion on Eccentricity and Critical Speed in Dry Submersible Induction Motors

  • Lv, Qiang;Bao, Xiaohua;He, Yigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-113
    • /
    • 2014
  • Rotor eccentricity is one of the major factors that directly influence the security of horizontal electrical machines, and the critical speed of the shaft has a close relationship with vibration. This paper deals with the influence of thermal expansion on the rotor eccentricity and critical speed in large dry submersible motors. The dynamic eccentricity (where the rotor is still turning around the stator bore centre but not its own centre) and critical speed of a three-phase squirrel-cage submersible induction motor are calculated via hybrid analytical/finite element method. Then the influence of thermal expansion is investigated by simulation. It is predicted from the study that the thermal expansion of the rotor and stator gives rise to a significant air-gap length decrement and an inconspicuous slower critical speed. The results show that the thermal expansion should be considered as an impact factor when designing the air gap length.

Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters (기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구)

  • Park, S.J.;Chang, J.H.;Jang, G.H.;Lee, Y.B.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF