• Title/Summary/Keyword: square wave anodic stripping voltammetry

Search Result 25, Processing Time 0.02 seconds

Electrochemical Assay of Neurotransmitter Glycine in Brain Cells

  • Ly, Suw-Young;Kim, Dong-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.515-519
    • /
    • 2007
  • Neurotransmitter glycine in the nano gram range was analyzed using a paste electrode (PE) in cyclic voltammetry (CV) and square-wave stripping voltammetry (SWSV). An anodic peak caused by oxidation of the glycine ion appeared at the 0.4 V (versus Ag/AgCl/KCl) potential in a 0.1 M NH4H2PO4 electrolyte solution. At optimized conditions, the working range of the SWSV and CV concentration was found to be 5-60 ngL-1 glycine; precision of R2 = 0.9816 (SWSV) and 0.9986 (CV); and detection limit of 0.65 ngL-1 (5.82 × 10-12 molL-1) (S/N = 3). The optimized conditions were applied to an assay in a fish brain tissue and a living brain cell in real time.

Real-time Pesticide Assay on Live Tissue Using Electrochemical Graphite Pencil Electrode (살아있는 세포에서 전기화학적 흑연 연필심 전극을 사용한 살균제의 실시간 분석)

  • Lee, Su-Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.208-215
    • /
    • 2006
  • A simply prepared graphite, pencil-type working electrode was utilized to monitor fenitrothion concentrations, using the cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry methods. The optimum conditions for analysis were sought. A very low detection limit was obtained compared to that obtained when other common voltammetry methods are used. The optimal parameters of the pencil-type electrode were found to be as follows: a pH of 3.7, a frequency of 500 Hz, an SW amplitude of 0.1 V, an increment potential of 0.005 V, an initial potential of -0.9V, and a deposition time of 500 sec. The analytical detection limit was determined to be 6.0 ngL-1 (2.16410-11 molL-1) fenitrothion at SW anodic and CV, and the relative standard deviation at the fenitrothion concentration of SW anodic 10 ugL-1 was 0.30% (n = 15) under the optimum conditions. Analysis was directly conducted through in-vivo real-time assay.

Ex Vivo Assay of Trace Nicotine Using a Voltammetric Modified Biosensor

  • Ly, Suw Young;Jang, Myung-Ho;Cha, Jae-Min;Kim, Min-Young;Oh, Hyun-Seok;Jo, Dong-Hyeon;Choi, Seong-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • In vivo nicotine is associated with Alzheimer's, Parkinson's and lung cancer. Diagnostic assays of these diseases depend on very low analytical detection limits. In this study, a sensitive analytical method was examined using a voltammetric graphite pencil electrode (GPE) and a modified carbon nanotube paste electrode (CNE). The optimum analytical conditions for both electrodes were compared using square wave anodic stripping voltammetry (SW) and cyclic voltammetry (CV) obtaining 400 sec accumulation time and oxidation peak. Under optimum parameters, the stripping working range of GPE was $5.0-40.0{\mu}g/L$, CNE: 0.1-0.8 and $5-50{\mu}g/L$. Quantification limits were $5.0{\mu}g/L$ for GPE and $0.1{\mu}g/L$ for CNE, while detection limits were $0.6{\mu}g/L$ for GPE and $0.07{\mu}g/L$ for CNE. A standard deviation of $10.0{\mu}g/L$ was observed for 0.064 GPE and 0.095 CNE (n = 12) using 400 sec accumulation time. The results obtained can be applied to non.treated urine and ex vivo biological diagnostics.

Voltammetric measurements of iron using an infrared photodiode electrode (적외선 광 다이오드를 사용한 철의 전압전류 정량)

  • Ly, Suw Young;June, Young Sam;Lee, Hyun Ku;Kwak, Kyu Ju;Kim, Kun Woo;Kim, Jong Hyoung;Jeong, Ho Young;Kim, Bong Kyun;Chun, Seok Joo;Chang, Jin Won
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.289-295
    • /
    • 2007
  • A simple electric circuit of an infrared photodiode electrode (IPDE) was utilized to monitor iron using square-wave (SW) anodic stripping voltammetry (SV) and cyclic voltammetry (CV). The optimum analytical conditions were determined and were compared with those of common working electrodes. The comparison showed that CV is more sensitive and convenient to use than the common voltammetry methods. At the optimized conditions, the working ranges of 0.1- to 0.8- and 0.85- to 6.0 mg/L iron was obtained. Relative standard deviation of 15 measurements of iron (0.4 mg/L) was 0.09%. The analytical detection limit was found to be $80{\pm}0.6ug/L$, which was applied to iron in waste water.

Electrochemical Evaluation of Cadmium and Lead by Thiolated Carbon Nanotube Electrodes (티올화된 탄소나노튜브 전극을 이용한 카드뮴과 납의 전기화학적 분석)

  • Yang, Jongwon;Kim, Lae-Hyun;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.551-557
    • /
    • 2013
  • In the present study, pristine carbon nanotube (p-CNT) and thiolated carbon naotube (t-CNT) electrodes were investigated to improve their detectabilities for cadmium (Cd) and lead (Pb). In addition, we evaluate which reaction mechanism is used when the electrolyte contains both Cd and Pb metals. Square wave stripping was employed for analyzing the sensitivity for the metals. A frequency of 30 Hz, a deposition potential of -1.2 V vs. Ag/AgCl and a deposition time of 300 s were used as optimal SWSV parameters. t-CNT electrodes show the better sensitivity for both Cd and Pb metals than that of p-CNT electrodes. In case of Cd, sensitivities of p-CNT and t-CNT electrodes were $3.1{\mu}A/{\mu}M$ and $4.6{\mu}A/{\mu}M$, respectively, while the sensitivities for Pb were $6.5{\mu}A/{\mu}M$ (p-CNT) and $9.9{\mu}A/{\mu}M$ (t-CNT), respectively. The better sensitivity of p-CNT electrodes is due to the enhancement in the reaction rate of metal ions that are facilitated by thiol groups attached on the surface of CNT. When sensitivity was measured for the detection of Cd and Pb metals present simultaneously in the electrolyte, Pb indicates better sensitivity than Cd irrespective of electrode types. It is ascribed to the low standard electrode potential of Pb, which then promotes the possibility of oxidation reaction of the Pb metal ions. In turn, the Pb metal ions are deposited on the electrode surface faster than that of Cd metal ions and cover the electrode surface during deposition step, and thus Pb metals that cover the large portion of the surface are more easily stripped than that of Cd metals during stripping step.