• Title/Summary/Keyword: square tube

Search Result 325, Processing Time 0.028 seconds

Simultaneous measurement of size and velocity of micro-bubbles in an opaque tube using X-ray micro-imaging technique (X-ray 미세 영상기법을 이용한 불투명 튜브 내부 미세기포의 크기 및 속도 동시 측정)

  • Kim Seok;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.45-46
    • /
    • 2003
  • The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.

  • PDF

A new empirical formula for prediction of the axial compression capacity of CCFT columns

  • Tran, Viet-Linh;Thai, Duc-Kien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.181-194
    • /
    • 2019
  • This paper presents an efficient approach to generate a new empirical formula to predict the axial compression capacity (ACC) of circular concrete-filled tube (CCFT) columns using the artificial neural network (ANN). A total of 258 test results extracted from the literature were used to develop the ANN models. The ANN model having the highest correlation coefficient (R) and the lowest mean square error (MSE) was determined as the best model. Stability analysis, sensitivity analysis, and a parametric study were carried out to estimate the stability of the ANN model and to investigate the main contributing factors on the ACC of CCFT columns. Stability analysis revealed that the ANN model was more stable than several existing formulae. Whereas, the sensitivity analysis and parametric study showed that the outer diameter of the steel tube was the most sensitive parameter. Additionally, using the validated ANN model, a new empirical formula was derived for predicting the ACC of CCFT columns. Obviously, a higher accuracy of the proposed empirical formula was achieved compared to the existing formulae.

Identifying the more suitable nostril for nasotracheal intubation using radiographs

  • Chi, Seong In;Park, Sookyung;Joo, Li-Ah;Shin, Teo Jeon;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Background: One nostril must be selected for nasotracheal intubation. In some cases, structural anomalies within the nasal cavity hinder the insertion of the tube or complications, such as epistaxis, develop. This study examined the possibility of using radiography to select the nostril that would induce fewer complications. Methods: Four hundred and five patients who underwent nasotracheal intubation under general anesthesia were studied. A 7.0-mm internal diameter nasal right angle endotracheal (RAE) tube and 6.5-mm internal diameter nasal RAE tube were inserted into men and women, respectively. Complications were considered to have developed in cases in which insertion of the tube into the nasal cavity failed or epistaxis occurred. The tube was inserted into the other nostril for insertion failures and hemostasis was performed in cases of epistaxis. The degree of nasal septal deviation was determined from posteroanterior skull radiographs or panoramic radiographs; the incidence of complications was compared depending on the direction of the septal deviation and the intubated nostril. Results: The radiographs of 390 patients were readable; 94 had nasal septum deviation. The incidence of complications for cases without nasal septum deviation was 16.9%, that for cases in which the tube was inserted into the nostril on the opposite side of the deviation was 18.5%, and that for cases in which the tube was inserted into the nostril with the deviation was 35.0%, showing a high incidence of complications when intubation is performed through the nostril with septum deviation (chi-square test, P < 0.05 ). Conclusions: Although there were no differences in the incidence rates of complications between intubation through the left nostril and that through the right nostril, radiological findings indicated that incidence of complications significantly increased when the tube was inserted into the nostril with the septum deviation.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Pressure Drop in a Helical Square Duct (나선형 사각덕트 내의 압력강하)

  • Ryu, Seung-Yeob;Yoon, Juh-Yeon;Lee, Doo-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.398-403
    • /
    • 2001
  • Pressure drop at a helical square duct orifice is numerically evaluated. The orifice is installed at the entrance of a once-through steam generator tube to suppress flow instabilities. The calculated results are compared with the available experimental correlations, and showed good agreement. Effects of curvature ratio and characteristics of the secondary flow with Reynolds number are reported. Through the numerical simulations, pressure drop mechanisms were well understood inside the compact and complicated orifice geometry.

  • PDF

The Dynamic Mean Crush Load of Thin-walled Square Tubes (박판 정4각튜브의 동적 평균압괴하중)

  • 김천욱;한병기;원종진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.119-127
    • /
    • 1998
  • Assuming that the static loaded square tube and the dynamic loaded one have no difference in their characteristics of the crush distance, the theoretical mean dynamic crush load was calculated with respect to the impact speed considering the strain rate sensitivity of the material. The ratio of dynamic to static mean crush load was predicted with previous results. The theoretical analysis was compared with the experimental results of aluminum square tubes axially loaded dynamically.

  • PDF

Finite-Slab element investigation of square-to-round multipass shape rolling

  • 이상매;김낙수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.251-255
    • /
    • 1991
  • The primary objectives of the rolling process are to reduce the cross section of the incoming material while improving its properties and to obtain the desired section at the exit from the rolls. Many engineering metals, suchas aluminium alloys, copper alloys, and steels are often cast intoingots and are then further processed byhot rolling into blooms, slabs, and billets, which are subsequently rolled into other products such as plate, sheet, tube, rod, bar, and structural shapes. In shape rolling a round or square bar is rolled in several passes into various shapes. During eachpass, the bar elongates as well as spreads. Thus, a very complex three-dimensional metal flow takes place. In this paper TASKS results for the simulation of a 7 pass square-to-round shape rolling are presented. The results are verified by comparing it with experimental results from a previous study conducted at the Battelle Columbus Labs

Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube (정사각관 내 데토네이션 파 구조의 삼차원 수치 해석)

  • Cho, Deok-Rae;Won, Su-Hee;Shin, Jae-Ryul;Lee, Soo-Han;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Three dimensional structures of detonation waves propagating in a square tube were investigated using a high resolution CFD code coupled with a conservation equation of reaction progress variable and an one-step irreversible reaction. The code were parallelized based on domain decomposition technique using MPI library. The computations were carried on an in-house Windows cluster with AMD processors. Three-dimensional unsteady analysis results in the smoked-foil records caused by the instabilities of the detonation waves, which showed the rectangular and diagonal modes of detonation instabilities depending on the initial condition of disturbances and the spinning detonation for case of small reaction constant.

A Study on the Structural Properties of RC Beams with Web Openings using Square Steel Tube (각형강관을 이용한 RC 유공보의 구조 특성 연구)

  • Lee, Seung-Jo;Park, Jung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.85-86
    • /
    • 2010
  • This study is aimed to investigate on the structural properties (like as strength, failure mode, ductility) of beams with web openings reinforced with steel tube of square. The main parameters are follows; 1) with and without web opening 2) the number of opening, 3) location of openings. In the quasi-static tests, structural properties of PFBS1A and PFBS2A were most superior. When the locations of opening are respectively maximal moment zone (M), shear (S), co-existence area of moment and shear (M+S), the specimen with web opening at maximal moment zone is not less than that without web opening in terms of strength and ductility.

  • PDF

A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration (4각 안내덕트 루프형상에 의한 난류특성변화 수치해석)

  • Yoo, Geun-Jong;Choi, Hoon-Ki;Choi, Kee-Lim;Shin, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.