• Title/Summary/Keyword: square norm

Search Result 70, Processing Time 0.02 seconds

A THEOREM OF G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURES IN Sn+1

  • So, Jae-Up
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.381-398
    • /
    • 2009
  • Let $G\;=\;O(k){\times}O(k){\times}O(q)$ and let $M^n$ be a closed G-invariant minimal hypersurface with constant scalar curvature in $S^{n+1}$. Then we obtain a theorem: If $M^n$ has 2 distinct principal curvatures at some point p, then the square norm of the second fundamental form of $M^n$, S = n.

Optimization of sensor location for source localization : Minimum-Norm Least-Square Method (신호원 국소화를 위한 위치의 최적화 : MNLS)

  • 김유정;한주만;이인범;박광석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.124-126
    • /
    • 2000
  • The Minimum-Norm Least-Square(MNLS) approach based on lead field theory is an useful method to find an unique inverse solution for the measured magnetic field. The lead field depends on head geometry and location of sources and sensors. So, optimization of sensor array location is important issue for MNLS estimation. In this paper, we present an investigation for the optimization of sensor array location in computer simulation.

  • PDF

Sparse Channel Estimation using weighted $l_1$-minimization (Weighted $l_1$-최소화기법을 이용한 Sparse한 채널 추정 기법)

  • Kwon, Seok-Beop;Ha, Mi-Ri;Shim, Byong-Hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.50-52
    • /
    • 2010
  • 통신 시스템의 성능을 향상시키는 핵심 문제 중에 하나인 채널을 추정하는 문제는 다양한 분야에서 연구되고 있다. 채널의 sparse한 특징으로 인해 기존의 linear square나 minimum mean square error보다 발전된 $l_1$-norm minimization 방법 등이 많이 연구되고 있다. 이에 본 논문은 sparse한 채널의 특징과 천천히 변화하는 채널환경 특징을 이용하여 기존의 방법에 비해 더 높은 성능의 채널 추정 기법을 연구한다. 천천히 변화하는 채널환경의 특징으로 인해 이전 채널 정보를 현재 채널 추정에 사용할 수 있고 sparse한 채널의 특징으로 $l_1$-norm minimization을 사용할 수 있다. 이러한 두 가지의 정보를 이용하여 weighted $l_1$-norm minimization 이용한 support detection후 MMSE를 이용한 채널 추정기법을 연구한다.

  • PDF

TWO-WEIGHT NORM ESTIMATES FOR SQUARE FUNCTIONS ASSOCIATED TO FRACTIONAL SCHRÖDINGER OPERATORS WITH HARDY POTENTIAL

  • Tongxin Kang;Yang Zou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1567-1605
    • /
    • 2023
  • Let d ∈ ℕ and α ∈ (0, min{2, d}). For any a ∈ [a*, ∞), the fractional Schrödinger operator 𝓛a is defined by 𝓛a := (-Δ)α/2 + a|x|, where $a^*:={\frac{2^{\alpha}{\Gamma}((d+{\alpha})/4)^2}{{\Gamma}(d-{\alpha})/4)^2}}$. In this paper, we study two-weight Sobolev inequalities associated with 𝓛a and two-weight norm estimates for several square functions associated with 𝓛a.

THE CONSISTENCY OF NONLINEAR REGRESSION MINIMIZING $L_p$-NORM

  • Choi, Seung-Hoe;Park, Kyung-Ok
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.421-427
    • /
    • 1998
  • In this paper we provide sufficient conditions which ensure the strong consistency of $L_p$-norm estimation in nonlinear regression model when the probability distribution of the errors term is symmetric about zero. The least absolute deviation and least square estimation are discussed as special cases of the proposed estimation.

  • PDF

A Regularized Mixed Norm Multi-Channel Image Restoration Algorithm (정규화 혼합 Norm을 이용한 다중 채널 영상 복원 방식)

  • 홍민철;신요안;이원철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.272-282
    • /
    • 2004
  • This paper introduces a regularized mixed norm multi-channel image restoration algorithm using both within-and between- channel deterministic information. For each channel a functional which combines the least mean squares (LMS), the least mean fourth (LMF), and a smoothing functional is proposed. We introduce a mixed norm parameter that controls the relative contribution between the LMS and the LMF, and a regularization parameter defining the degree of smoothness of the solution, where both parameters are updated at each iteration according to the noise characteristics of each channel. The novelty of the proposed algorithm is that no knowledge of the noise distribution for each channel is required and that the parameters mentioned above are adjusted based on the partially restored image.

Fuzzy Linear Regression Model Using the Least Hausdorf-distance Square Method

  • Choi, Sang-Sun;Hong, Dug-Hun;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.643-654
    • /
    • 2000
  • In this paper, we review some class of t-norms on which fuzzy arithmetic operations preserve the shapes of fuzzy numbers and the Hausdorff-distance between fuzzy numbers as the measure of distance between fuzzy numbers. And we suggest the least Hausdorff-distance square method for fuzzy linear regression model using shape preserving fuzzy arithmetic operations.

  • PDF

PRECONDITIONED KACZMARZ-EXTENDED ALGORITHM WITH RELAXATION PARAMETERS

  • Popa, Constantin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.757-770
    • /
    • 1999
  • We analyse in this paper the possibility of using preconditioning techniques as for square non-singular systems, also in the case of inconsistent least-squares problems. We find conditions in which the minimal norm solution of the preconditioned least-wquares problem equals that of the original prblem. We also find conditions such that thd Kaczmarz-Extendid algorithm with relaxation parameters (analysed by the author in [4]), cna be adapted to the preconditioned least-squares problem. In the last section of the paper we present numerical experiments, with two variants of preconditioning, applied to an inconsistent linear least-squares model probelm.

Mixed Norm for Multichannel Image Restoration Algorithm (다중 채널 영상복원을 위한 혼합 노름 기법)

  • 김도령;송원선;홍민철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1715-1718
    • /
    • 2003
  • 본 논문에서 우리는 정규화 된 혼합 노름(norm)을 이용한 다중 채널 영상 복원 알고리즘을 제안한다. 채널 내부와 채널 사이의 결정론적 정보를 이용하는 다중채널 복원 문제를 고려한다. 각 채널에서, LMS(Least Mean Square), LMF(Least Mean Fourth), 평탄 함수가 결합된 함수가 제안되었다. LMS와 LMF 사이의 적절한 분배를 제어하는 혼합 노를 매개변수와 해의 평탄 정도를 정의하는 정규화 매개 변수를 소개하며, 두 매개 변수는 각 채널의 잡음 특성에 따라 매번 반복적으로 갱신된다. 제안된 알고리즘은 각 채널의 잡음분포에 대한 지식이 필요하지 앉고 앞에서 언급된 매개 변수는 부분적으로 복원된 영상에 기반을 두고 조절하게 된다.

  • PDF