• Title/Summary/Keyword: sputtering depth

Search Result 100, Processing Time 0.027 seconds

An analysis of tribological properties of the metal interlayered DLC films prepared by PECVD method (PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석)

  • Jeon, Young-Sook;Choi, Won-Seok;Park, Yong-Seob;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.951-954
    • /
    • 2004
  • 본 논문에서는 DLC(Diamond-like Carbon) 박막과 기판 사이에 금속층을 포함하는 DLC 박막의 기계적 특성을 분석하였다. 금속층은 sputtering법을 사용하고, DLC 박막은 PECVD법을 사용하여 각각 중착하였다. 티타늄(Ti), 니켄(Ni), 크롬(Cr)을 각 중간 금속층으로 사용한 후 DLC 박막과 실리콘(Si) 기판 간의 기계적 특성을 분석하였다. 각 막의 두께는 FE-SEM으로 확인하였고, DLC 박막의 구조 평가는 Raman spectrometer를 사용하여 분석하였으며, 각 금속층과 DLC 박막의 표면 상태는 AFM을 이용하여 확인하였다. XRD 분석을 통하여 박막의 격자분석을 하였고, SIMS(secondary ion mass spectrometry) 분석을 통하여 DLC 박막의 depth Profile을 확인하였다.

  • PDF

Preparation of $Ba_{0.5}Sr_{0.5}TiO_3$ Thin Films by Off-Axis RF Magnetron Sputtering (Off-Axis RF Magnetron Sputtering 방법에 의한 $Ba_{0.5}Sr_{0.5}TiO_3$ 박막의 제조)

  • Shin, Jin;Hahn, Taek-Sang;Kim, Young-Hwan;Lee, Jae-Jun;Park, Soon-Ja;Oh, Myung-Hwan;Choi, Sang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1429-1436
    • /
    • 1994
  • We have prepared Ba0.5Sr0.5TiO3 thin films on Si substrate without buffer layer. Deposition was carried out by off-axis rf magnetron sputtering method using Ba0.5Sr0.5TiO3 stoichiometric target. The substrate temperature was changed from 40$0^{\circ}C$ to $700^{\circ}C$ during deposition. As the substrate temperature increased, relative intensity of (110) peak increased up to $600^{\circ}C$, however preferred orientation changed from (110) to (h00) beyond $650^{\circ}C$ of substrate temperature. Deposited films showed microstructures with fine grains whose diameters are less than 100 nm, and columnar structure was observed in the cross-sectional SEM micrograph. AES depth profile showed no significant diffusion at the interfacial reaction area. The effective dielectric constant of films showed maximum value at $600^{\circ}C$, and the leakage current increased with increasing substrate temperature, which may be ascribed to the crystallization of amorphous phases at grain boundary.

  • PDF

Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties (Indium Tin Oxide (ITO) 투광성 박막의 제조 및 전자파 차폐특성)

  • Kim, Yeong-Sik;Jeon, Yong-Su;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1055-1061
    • /
    • 1999
  • Indium Tin Oxide (ITO) films were fabricated by vacuum deposition technique and their microwave shielding properties were investigated for the application to the transparent shield material. The vacuum coating was conducted in a RF co-sputtering machine. The film composition and structure associated with the sputtering conditions (argon and oxygen pressure. substrate temperature. RF input power) were investigated for the attainment of high electrical conductivity and good transparency. The electrical conductivity of IT0 films fabricated under the optimum deposition conditions (substrate temperature : $300^{\circ}C$. Ar flow rate : 20 sccm, Oxygen flow rate : 10 sccm, In/Sn input power : 50/30 W) showed 5.6$\times10^4$mho/m. The optical transparency is also considerably good. The microwave shielding properties including the dominant shielding mechanism are investigated from the electrical conductivity, thickness and skin depth of the ITO films. The total shielding effectiveness is then estimated to be 26 dB, which provides a suggestion that the IT0 films can be effectively used as the transparent shield material.

  • PDF

Preparation of sputter-deposited CuOx thin film with p-type conductivity and application as thin film transistor

  • So Jeong Park;Eui-Jung Yun
    • Journal of the Korean Physical Society
    • /
    • v.81
    • /
    • pp.867-875
    • /
    • 2022
  • This paper explored the effect of deposition conditions on the characteristics of copper oxide (CuOx) thin films prepared by direct current (DC) magnetron sputtering. X-ray diffraction exhibited that CuO with n-type conductivity was the main composition regardless of the DC magnetron sputtering power whereas the phase transition from n-type CuO to p-type Cu2O was observed with decreasing the oxygen pressure (OP) from 40 to 20%. The optical band gap ranges of 1.6-1.9 eV, which are characteristic of n-type CuO, were determined for samples prepared with OPs of 30-40% while the optical band gap of 2.3 eV, which is characteristic of p-type Cu2O, was measured for samples prepared with an OP of 20%. In addition, only Cu+ X-ray photoelectron spectroscopy (XPS) peak at the ~932.6 eV position exists in the films deposited with an OP of 20%, whereas only Cu2+ XPS peaks at ~934.2 eV and in the range of 940-945 eV are observed in the films deposited with an OP of 40%. Furthermore, as a result of XPS depth profile analysis, it was confirmed that the composition ratio of the sample prepared at an OP of 20% was Cu2O, whereas the composition ratio of the sample prepared at an OP of 40% was CuO. These suggest that the CuOx thin films could be constantly converted from n-type CuO to p-type Cu2O by decreasing the oxygen partial pressure. Thin film transistors with Cu2O deposited at 20% OP revealed p-type characteristics such as onset voltage (VON) of -3 V, saturated hole mobility of 8 cm2/Vs at VGS = -28 V, subthreshold swing of 0.86 V/decade at VGS-VON = -0.5 V, and on/off ratio of 1.14 × 103.

Physical Properties of AuGe Liquid Metal Ion Implanted n-GaAs (AuGe 액체금속 이온이 주입된 n-GaAs의 물성연구)

  • Kang, Tae-Won;Lee, Jeung-Ju;Kim, Song-Gang;Hong, Chi-Yhou;Leem, Jae-Young;Chung, Kwan-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.63-70
    • /
    • 1989
  • The ion beam extracted from the AuGe liquid metal ion source was implanted into GaAs substrate. The surface composition and the structure of ion implanted samples were investigated by AES, RHEED, SEM and EPMA. The depth profiles measured by AES were compared with the results of Monte Carlo simulation based on the two-body collision. As the results of AuGe ion implantation the preferential sputtering of As were revealed by AES and EPMA, and the outdiffusion of Ga and Ge was investigated by 300$^{circ}C$ annealing. The Au and Ge depth profiles measured by AES agreed with the results of Monte Carlo simulation based on the two-body collision.

  • PDF

Hydrogen Depth Profiling by Nuclear Resonance Reaction (공명 핵반응을 이용한 수소적층 분석)

  • Kim, Y. S.;Kim, J. M.;Hong, W.;Kim, D. K.;Cho, S. Y.;Woo, H. J.;Kim, N. B.
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.416-423
    • /
    • 1993
  • Hydrogen depth profiling was performed by H(19F, $\alpha$${\gamma}$) nuclear resonance reactin . A cesium sputtering ion sorce and 1.7MV Tandem Van de Graaff accelerator was used for the production of 6.5MeV 19F ion. The ${\gamma}$ rays produced by the reaction were measure dby 3" $\times$3" and 6" $\times$8" Nal detectors . A test measurement was done for hydrogen contaminatin layer of a bare silicon wafer, Si3N4(H) and Zr(O)a-Si/Si for the purpose of verifying the applicability , detection limit and the reliability of the method.ility of the method.

  • PDF

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

CsX+ SNMS의 Matrix Effect 감소연구

  • 문환구;김동원;한철현;김영남;심태언
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1992.02a
    • /
    • pp.17-18
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth p profiling because of high detection sensitivity and excellent depth r resolution, however, it requires standard sample to do quantitative analysis d due to matrix effect depending on the species of impurities and sample m matricies and on the sputtering rates. A Among the SNMS technology developed to supply the deficiency, we researched i into CsX+ SNMS which improved the resul t quanti tati vely wi thout any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate a analysis using Si02 layer etc. and adaptability to trace element c concentration analysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented s strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. d dynamic range were investigated. A After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF

Research of Matrix Effect Reduction of $CsX^+$ SNMS ($CsX^+$ SNMS의 Matrix Effect 감소연구)

  • 문환구;김동원;한철현;김영남;심태언
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth profiling because of high detection sensitivity and excellent depth resolution, however, it requires a standard sample to do quantitative analysis due to matrix effect depending on the species of impurities and sample matricies and on the sputtering rates. Among the SNMS technology developed to supply the deficiency, we researched into CsX+ SNMS which improved the result quantitatively without any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate analysis using Siq layer etc., and adaptability to trace element concentration alaysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. Also detection limit and dynamic range were investigated. After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF