• 제목/요약/키워드: sputtering depth

Search Result 100, Processing Time 0.03 seconds

The influence of sputtering rate during depth profiling (Depth Profiling에서 Sputtering Rate의 영향)

  • 김주광;성인복;김태준;오상훈;강석태
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.162-167
    • /
    • 2003
  • To find the concentration according to the depth-direction of ions implanted in the sample, with sputtering of the sample surface, one needs the depth profiling of ion implanted in the sample. On measuring of depth profiling, the sputtering rate to affect depth direction, is calculated by SRIM simulation. When ion is implanted in the sample, the atomic density of the sample rises up a little, and it alters sputtering yield. This alteration then causes differences of sputtering rate to affect depth-direction, on measuring of depth profiling. With the usage of SRIM Monte Carlo simulation code, one calculates sputtering rate, with sputtering yield by the alteration of atomic density of the sample through ion implantation. As a result, it goes to prove that its difference affects depth distribution, on measuring of depth profiling.

The transient sputtering yield change of an amorphous Si layer by low energy $O_2^{+}$ and $Ar^{+}$ ion bombardment

  • Shin, Hye-Chung;Kang, Hee-Jae;Lee, Hyung-Ik;Moon, Dae-Won
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.92-94
    • /
    • 2003
  • The sputtering yield change of an amorphous Si layer on Si(100) was measured quantitatively for 0.5 keV $O_2^{+}$ and $Ar^{+}$ ion bombardment with in suit MEIS. In the case of 0.5 keV $O_2^{+}$ ion bombardment, at the initial stage of sputtering before surface oxidation, the sputtering yield of Si was 1.4 (Si atoms/$O_2^{+}$) and then decreased down to 0.06 at the ion dose of $3\times10^{16}O_2\;^{+}\textrm{/cm}^2$. In the case of 0.5 keV $Ar^{+}$ ion bombardment, the sputtering yield of Si for the surface normal incidence was 0.56 at the ion dose of 2.5 ${\times}$ 10$^{15}$ $Ar^{+}\textrm{cm}^2$, and rapidly saturated to 1.2 at dose of $7.5\times10^{15}Ar^+\textrm{cm}^2$. For the incidence angle of 80 from surface normal, the sputtering yield of Si was saturated to about 1.4 at the initial stage of sputtering. The surface transient effects, caused by change in sputtering yield at the initial stage of sputtering can be negligible when 0.5 keV $Ar^{+}$ ion at extremely grazing angle was used for sputter depth profiling.g.

Sputtering of Solid Surfaces at Ion Bombardment

  • Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.20-20
    • /
    • 1998
  • I Ion beam technology has recently attracted much interest because it has exciting t technological p아:ential for surface analysis, ion beam mixing, surface cleaning and etching i in thin film growth and semiconductor fabrication processes, etc. Es야~cially, ion beam s sputtering has been widely used for sputter depth profiling with x-photoelectron S spectroscopy (XPS) , Auger electron s$\pi$~troscopy(AES), and secondary-ion mass S야i따oscopy(SIMS). However, The problem of surface compositional ch없1ge due to ion b bombardment remains to be understo여 없ld solved. So far sputtering processes have been s studied by s따face an외ysis tools such as XPS, AES, and SIMS which use the sputtering p process again. It would be improbable to measure the modified surface composition profiles a accurately due to ion beam bombardment with surface analysis techniques based on sputter d depth profiling. However, recently Medium energy ion scattering spectroscopy(MEIS) has b been applied to study the sputtering of solid surface at ion bombardment and has been p proved that it has been extremely valuable in probing the surface composition 뻐d s structure nondestructively and quantita디vely with less than 1.0 nm depth resolution. To u understand the sputtering processes of solid surface at ion bombardment, The Molecular D Dynamics(MD) and Monte Carlo(MC) simulation has been used and give an intimate i insight into the sputtering processes of solid surfaces. In this presentation, the sputtering processes of alloys and compound samples at ion b bombardment will be reviewed and the MEIS results for the Ar+ sputter induced altered l layer of the TazOs thin film 뻐dd없nage profiling of Ar+ ion sputt얹"ed Si(100) surface will b be discussed with the results of MD and MC simulation.tion.

  • PDF

The effect of deposition condition on the oxidation of TbFeCo thin films in facing targets sputtering system (Facing targets sputtering system에서 TbFeCo박막의 산화에 미치는 제조조건의 영향)

  • 문정탁;김명한
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.511-519
    • /
    • 1994
  • The effect of the deposition conditions, such as the base pressure, working pressure, sputtering power, pre-sputtering, and deposition thickness in facing targets sputtering system(FTS), on the oxidation of the TbFeCo thin films was studied by investigating the magneto-optical properties as well as oxygen analysis by the AES depth profiles. The results showed that the base pressure did not affect the magnetic properties so much, probably due to the short flight distance of the sputtered particles. At the higher sputtering power and lower working pressure with pre-sputtering the oxidation of TbFeCo thin films was decreased. As the film thickness increased the TbFeCo thin films showed the perpendicular anisotropy from in-plane anisotropy overcoming the oxidation effect at the beginning of the sputtering.

  • PDF

Development of certified reference material (CRM)s for surface analysis II : multilayer thin films for sputter depth profiling (표면분석용 인증표준물질의 개발 II : 깊이분포도용 다층 박막 표준물질의 개발)

  • 김경중;문대원
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.283-289
    • /
    • 1999
  • Multilayer thin film reference materials for the sputter depth profiling analysis are used to calibrate the sputter depth scale by measuring the sputtering rate and to optimize the sputtering conditions for the best depth resolution. Surface analysis group of Korea Research Institute of Standards and science (KRISS) have developed various types of multilayer thin films by using an ion beam sputter deposition and in-situ surface analysis system. The chemical states of the thin films reference materials were certified by in-situ XPS and the thicknesses were certified by transmission electron microscopy (TEM).

  • PDF

Fabrication and Bi-Sr-Ca-Cu-O Superconducting Thin Films by RF Magnetron Sputtering (RF-Magnetron Sputtering에 의한 Bi-Sr-Ca-Cu-O 초전도 박막의 제조)

  • 홍철민;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.227-233
    • /
    • 1994
  • The Bi-Sr-Ca-Cu-O thin films were deposited by RF-magnetron sputtering method on Si(P-111) wafer without a buffer layer and annealed at various temperatures in oxygen atmosphere. The temperature dependence of electrical resistance, the microstructure of intermediate phase, and the surface morphology of films were examined by four probe method, XRD, and SEM, respectively. The chemical composition and the depth profile of the films were determined by ESCA spectra. Thin films annealed at $600^{\circ}C$ and $700^{\circ}C$ in oxygen atmosphere showed onset temperatures of 90 K and 85K, and Tc(zero) of 22K and 31K, respectively. The sample annealed at $700^{\circ}C$ had the highest volume fraction of superconducting phase and showed smooth microsturcture. In ESCA spectra, the thin films were homogeneous with depth.

  • PDF

The analysis of sputtering characteristics using Focused Ion Beam according to Focal Length (FIB 가공 공정 특성 분석)

  • Choi B.Y.;Choi W.C.;Kang E.G.;Hong W.P;Lee S.W.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1518-1521
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries This paper focus to apply the sputtering technology accumulated by experiments to 3d structure fabrication with high resolution. Therefore some verifications and discussions of the characteristics of FIB sputtering results according to focal length were described in this paper. And we suggested the definition of rectangular pattern profile and made the verifications of sputtering results based on definition of it.

  • PDF

Effect of Oxygen Incorporation in the Fabrication of TiN Thin Film for Frame by UBM Sputtering System (UBM Sputtering System에 의한 안경테용 TiN막 제작에 있어 Oxygen 영향 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok;Lee, Wha Ja;Kim, Eung Soon;Choi, Kwang Ho
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The effect of oxygen incorporation in the fabrication of deposited films was investigated. Methods: The cross sections of deposited films on Silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS survey spectra, the compositional depth-profile of deposited films was examined by an XPS apparatus. Results: From the data of XPS depth profile of films, it could be seen that the element O as well as the elements Ti and N present in the surface of the film and the relative percentage of the element O was constant at 65 at.% with respect to the depth of film. Conclusions: The color change with thickness of the films had something to do with the change of Ti $ 2p_{3/2}$ peak intensity and shape mixed of $ TiO_2$, TiN, $ TiO_{x}N_{y}$ compound.

  • PDF

Applications of Ar Gas Cluster Ion Beam Sputtering to Ta2O5 thin films on SiO2/Si (100)

  • Park, Chanae;Chae, HongChol;Kang, Hee Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.119-119
    • /
    • 2015
  • Ion beam sputtering has been widely used in Secondary Ion Mass Spectrometry (SIMS), X-ray Photoelectron Spectroscopy (XPS), and Auger Electron Spectroscopy (AES) for depth profile or surface cleaning. However, mainly due to severe matrix effects such as surface composition change from its original composition and damage of the surface generated by ion beam bombardment, conventional sputtering skills using mono-atomic primary ions with energy ranging from a few hundred to a thousand volts are not sufficient for the practical surface analysis of next-generation organic/inorganic device materials characterization. Therefore, minimization of the surface matrix effects caused by the ion beam sputtering is one of the key factors in surface analysis. In this work, the electronic structure of a $Ta_2O_5$ thin film on $SiO_2/Si$ (100) after Ar Gas Cluster Ion Beam (GCIB) sputtering was investigated using X-ray photoemission spectroscopy and compared with those obtained via mono-atomic Ar ion beam sputtering. The Ar ion sputtering had a great deal of influence on the electronic structure of the oxide thin film. Ar GCIB sputtering without sample rotation also affected the electronic structure of the oxide thin film. However, Ar GCIB sputtering during sample rotation did not exhibit any significant transition of the electronic structure of the $Ta_2O_5$ thin films. Our results showed that Ar GCIB can be useful for potential applications of oxide materials with sample rotation.

  • PDF