• 제목/요약/키워드: sputtering deposition

검색결과 1,501건 처리시간 0.028초

ALD와 RF 마그네트론 스퍼터링을 이용한 FBAR 소자의 ZnO 박막증착 및 특성 (Characteristics of ZnO Thin Films of FBAR using ALD and RF Magnetron Sputtering)

  • 신영화;권상직;윤영수
    • 한국전기전자재료학회논문지
    • /
    • 제18권2호
    • /
    • pp.164-168
    • /
    • 2005
  • Piezoelectric ZnO thin films were for the first time formed on SiO$_2$/Si(100) substrate using 2-step deposition, atomic layer deposition(ALD) and RF magnetron sputtering deposition, for film bulk acoustic resonator(FBAR) applications. The ZnO buffer layer by ALD was deposited using alternating diethyl zinc(DEZn)/$H_2O$ exposures and ultrahigh purity argon gas for purging. The ZnO films by 2-step deposition revealed stronger c-axis-preferred orientation and smoother surface than those by the conventional RF sputtering method. The solidly mounted resonator(SMR)-typed FBAR fabricated by using 2-step deposition method revealed higher quality factor of 580 and lower return loss of -17.35dB. Therefore the 2-step deposition method in this study could be applied to the FBAR device fabrication.

RF/DC Magnetron Sputtering을 이용한 Acoustic Bragg Reflector 최적 증착조건에 관한 연구 (A Study on the Deposition Condition of Acoustic Bragg Reflector Using RF/DC Magnetron Sputtering)

  • 임문혁;;채동규;윤기완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.143-147
    • /
    • 2002
  • 본 논문에서는 FBAR소자에서 중요한 역할을 하는 Reflector의 최적 증착조건을 RF/DC마그네트론 스퍼터링을 이용하여 조사하였다. Reflector를 구성하는 SiO$_2$와 W박막의 증착속도, 결정성, 표면거칠기 둥을 다양한 증착조건에서 관찰한 결과 빠른 증착속도를 보이면서 치밀하고 결정성이 좋은 박막을 얻을 수 있는 조건을 찾을 수 있었고, 이 조건으로 5층의 Acoustic Bragg Reflector 구조를 제작하였다.

  • PDF

반응성 스퍼터링법에서의 RF전력, 기판온도 및 가스유량비가 WCx막의 기계적 특성에 끼치는 효과 (Effects of RF Power, Substrate Temperature and Gas Flow Ratio on the Mechanical Properties of WCx Films Deposited by Reactive Sputtering)

  • 박연규;이종무
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.621-625
    • /
    • 2005
  • Effects of rf power, pressure, sputtering gas composition, and substrate temperature on the deposition rate of the $WC_x$ coatings were investigated. The effects of rf power and sputtering gas composition on the hardness and corrosion resistance of the $WC_x$ coatings deposited by reactive sputtering were also investigated. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) analyses were performed to determine the structures and compositions of the films, respectively. The hardnesses of the films were investigated using a nanoindenter, scanning electron microscopy, ana a salt-spray test, respectively. The deposition rate of the films was proportional to rf power and inversely proportional to the $CH_4$ content of $Ar/CH_4$ sputtering gas. The deposition rate linearly increased with increasing chamber pressure. The hardness of the $WC_x$ coatings Increased as rf power increased. The highest hardness was obtained at a $Ar/CH_4$ concentration of $10 vol.\%$ in the sputtering gas. The hardness of the $WC_x$ film deposited under optimal conditions was found to be much higher than that of the electroplated chromium film, although the corrosion resistance of the former was slightly lower than that of the latter.

대향타겟식 스퍼터링 장치의 공정 조건에 따른 SiO2 가스 차단막의 특성 (Characteristics of SiO2 Gas Barrier Films as a Function of Process Conditions in Facing Target Sputtering (FTS) System)

  • 배강;왕태현;손선영;김화민;홍재석
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.595-601
    • /
    • 2009
  • For the silicon oxide $(SiO_x)$ films prepared by using the facing target sputtering (FTS) apparatus that was manufactured to enhance the preciseness of the fabricated thin-film and sputtering yield rate by forming a higher-density plasma in the electrical discharge space for using it as a thin-film passivation system for flexible organic light emitting devices (FOLEDs). The deposition characteristics were investigated under various process conditions, such as array of the cathode magnets, oxygen concentration$(O_2/Ar+O_2)$ introduced during deposition, and variations of distance between two targets and working pressure. We report that the optimum conditions for our FTS apparatus for the deposition of the $SiO_x$ films are as follows: $d_{TS}\;and\;d_{TT}$ are 90mm and 120mm, respectively and the maximum deposition rate is obtained under a gas pressure of 2 mTorr with an oxygen concentration of 3.3%. Under this optimum conditions, it was found that the $SiO_x$ film was grown with a very high deposition rate of $250{\AA}$/min by rf-power of $4.4W/cm^2$, which was significantly enhanced as compared with a deposition rate (${\sim}55{\AA})$/min) of the conventional sputtering system. We also reported that the FTS system is a suitable method for the high speed and the low temperature deposition, the plasma free deposition, and the mass-production.

유도결합형 플라즈마를 사용한 반응성 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 특성분석 (Characterization and deposition of ZnO thin films by Reactive Magnetron Sputtering using Inductively-Coupled Plasma (ICP))

  • 김동선
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.83-89
    • /
    • 2011
  • In this study, we investigated the effects of shutter control by Reactive Magnetron Sputtering using Inductively-Coupled Plasma(ICP) for obtaining ZnO thin films with high purity. The surface morphologies and structure of deposited ZnO thin films were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffractometer (XRD). Also, optical and chemical properties of ZnO thin films were analyzed by Spectroscopic Ellipsometer (SE) and X-ray Photoelectron spectroscopy (XPS). As a result, it observed that ZnO thin films grown at reactive sputtering using shutter control and ICP were higher density, lower surface roughness, better crystallinity than other conventional sputtering deposition methods. For obtaining better quality deposition ZnO thin films, we will investigate the effects of substrate temperature and RF power on shutter control by a reactive magnetron sputtering using inductively-coupled plasma.

투명전도성 박막의 활용을 위한 스퍼터링 증착 기술과 전망 (Sputtering Technology and Prospect for Transparent Conductive Thin Film)

  • 김상모;김경환
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.109-124
    • /
    • 2023
  • For decades, sputtering as a physical vapor deposition (PVD) method has been a widely used technique for film coating processes. The sputtering enables oxides, metals, alloys, nitrides, etc to be deposited on a wide variety of substrates from silicon wafers to polymer substrates. Meanwhile, transparent conductive oxides (TCOs) have played important roles as electrodes in electrical applications such as displays, sensors, solar cells, and thin-film transistors. TCO films fabricated through a sputtering process have a higher quality leading to an improved device performance than other films prepared with other methods. In this review, we discuss the mechanism of sputtering deposition and detail the TCO materials. Related technologies (processing conditions, materials, and applications) are introduced for electrical applications.

RF 마그네트론 스퍼터링에 의해 제조된 AlN 박막의 증착 특성 (Deposition Characteristics of AlN Thin Films Prepared by RF Magnetron Sputtering)

  • 송종한;전명표;최덕균
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.969-973
    • /
    • 2012
  • AlN thin films were deposited on p-type Si(100) substrates by RF magnetron sputtering method. This study showed the change of the preferential orientation of AlN thin films deposition with the change of the deposition conditions such as sputtering pressure and Ar/N2 gas ratio in chamber. It was identified by X-ray diffraction patterns that AlN thin film deposited at low sputtering pressure has a (002) orientation, however its preferred orientation was changed from the (002) to the (100) orientation with increasing sputtering pressure. Also, it was observed that the properties of AlN thin films such as thickness, grain size and surface roughness were largely dependent on Ar/$N_2$ gas ratio and a high quality thin film could be prepared at lower nitrogen concentration. AlN thin films were investigated relationship between preferential orientation and deposition condition by using XRD, FE-SEM and PFM.

RF 마그네트론 스퍼터링에 의해 실리콘이 증착된 메타아라미드 직물의 성질 분석 (Properties of Silicon-deposited Meta-aramid Fabrics by RF Magnetron Sputtering)

  • 박종현;이선영;김춘수;강송희;김의화;이승구
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.18-24
    • /
    • 2017
  • Meta-aramid fabric has been widely used as the reinforcement of composites due to its high flame resistance and tearing strength. Functionality such as abrasion resistance of fabric is very important for specialty fabrics used in car racing suits. In this study, to improve abrasion resistance property of meta-aramid fabric, silicon deposition was conducted by utilizing RF magnetron sputtering. The sputtering process parameters effects were investigated as sputtering power and substrate temperature. The obtained results suggest that the silicon deposition on the meta-aramid fabric has obvious effect upon increasing the abrasion resistance, the thermal insulation and the electric resistance condition for silicon deposition was established. In conclusion, the results of this study have made it possible to manufacture meta-aramids with higher abrasion strength.

증착율 변화에 따른 TIO 박막의 전기적, 광학적 특성 변화 (Influence of Deposition Rate on the Optoelectrical Properties of TIO Thin Films)

  • 문현주;김대일
    • 열처리공학회지
    • /
    • 제29권2호
    • /
    • pp.62-65
    • /
    • 2016
  • TIO thin films were deposited on the poly-carbonate substrates with RF magnetron sputtering under different sputtering power condition to investigate the influence of deposition rate on the electrical and optical properties of the films. Although, all films have the similar carrier concentration, the films prepared at a lower deposition rate of 4 nm/min show a higher mobility of $5.96cm^2\;V^{-1}S^{-1}$ due to the low surface roughness. In addition, optical transmittance is also influenced by a deposition rate. Based on the figure of merit, it can be concluded that the lower deposition rate effectively enhances the opto-electrical performance of IGZO films for use as transparent conducting oxides in flexible display applications.

ITO 전극 형성 방법이 청색 발광 다이오드의 전기 광학적 특성에 미치는 영향 (Influence of ITO-Electrode Deposition Method on the Electro-optical Characteristics of Blue LEDs)

  • 한재호;김상배;전동민
    • 대한전자공학회논문지SD
    • /
    • 제44권11호
    • /
    • pp.43-50
    • /
    • 2007
  • ITO(Indium Tin Oxide) 전극 형성방법은 ITO 박막 자체의 전기 광학적 특성 뿐 아니라 ITO를 전극으로 하는 청색 발광 다이오드(파장 469nm)의 전기 광학적 특성 및 신뢰성에도 큰 영향을 미침을 확인하였다. 세 가지 ITO 전극 형성 방법 즉 electron beam evaporation법과 sputtering법, 그리고 electron beam evaporation법으로 먼저 증착한 뒤에 sputtering법으로 증착한 hybrid법 등을 사용하여 청색 발광 다이오드를 제작한 다음에 ITO 박막의 특성과 aging에 따른 발광 다이오드의 전기 광학적 특성 변화를 고찰하였다. 그 결과, ITO 전극을 sputtering 또는 electron beam evaporation 방법으로 형성한 발광 다이오드는 각각 sputtering damage의 문제와 전기저항이 증가하는 문제점을 안고 있음을 발견하였다. 그리고 이 문제점들을 hybrid 방법으로 해결하였다.