DOI QR코드

DOI QR Code

Sputtering Technology and Prospect for Transparent Conductive Thin Film

투명전도성 박막의 활용을 위한 스퍼터링 증착 기술과 전망

  • Sangmo Kim (Department of Intelligent Mechatronics Engineering, Sejong University) ;
  • Kyung Hwan Kim (Department of Electrical Engineering, Gachon University)
  • Received : 2023.01.18
  • Accepted : 2023.01.30
  • Published : 2023.03.01

Abstract

For decades, sputtering as a physical vapor deposition (PVD) method has been a widely used technique for film coating processes. The sputtering enables oxides, metals, alloys, nitrides, etc to be deposited on a wide variety of substrates from silicon wafers to polymer substrates. Meanwhile, transparent conductive oxides (TCOs) have played important roles as electrodes in electrical applications such as displays, sensors, solar cells, and thin-film transistors. TCO films fabricated through a sputtering process have a higher quality leading to an improved device performance than other films prepared with other methods. In this review, we discuss the mechanism of sputtering deposition and detail the TCO materials. Related technologies (processing conditions, materials, and applications) are introduced for electrical applications.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2021R1F1A1064416).

References

  1. O.S.I. Fayomi, I. G. Akande, O. P. Abioye, and O. B. Fakehinde, Proc. Manuf., 35, 1007 (2019). [DOI: https://doi.org/10.1016/j.promfg.2019.06.049]
  2. G. R. Seong, S. H. Cho, K. H. Kim, Y. J. Shin, S. M. Jeong, T. G. Kim, and S. Y. Bae, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 74 (2023). [DOI: https://doi.org/10.4313/JKEM.2023.36.1.74]
  3. Q. Wang, N. Huang, H. Cai, X. Chen, and Y. Wu, Water Cycle, 4, 12 (2023). [DOI: https://doi.org/10.1016/j.watcyc.2022.12.001]
  4. J. I. Jeong and J. H. Yang, J. Korean Magn. Soc., 21, 185 (2011). [DOI: https://doi.org/10.4283/JKMS.2011.21.5.185]
  5. N. Schalk, M. Tkadletz, and C. Mitterer, Surf. Coat. Technol., 429, 127949 (2022). [DOI: https://doi.org/10.1016/j.surfcoat.2021.127949]
  6. E. Aydin, C. Altinkaya, Y. Smirnov, M. A. Yaqin, K.P.S. Zanoni, A. Paliwal, Y. Firdaus, T. G. Allen, T. D. Anthopoulos, H. J. Bolink, M. Morales-Masis, and S. De Wolf, Matter, 4, 3549 (2021). [DOI: https://doi.org/10.1016/j.matt.2021.09.021]
  7. P. Sigmund, Phys. Rev., 184, 383 (1969). [DOI: https://doi.org/10.1103/PhysRev.184.383]
  8. G. Brauer, Compr. Mater. Process., 4, 57 (2014). [DOI: https://doi.org/10.1016/B978-0-08-096532-1.00403-9]
  9. J. G. Han, J. Phys. D: Appl. Phys., 42, 043001 (2009). [DOI:https://doi.org/10.1088/0022-3727/42/4/043001]
  10. J. Fu, P. Ding, F. Dorleans, Z. Xu, and F. Chen, J. Vac. Sci. Technol., A17, 2830 (1999). [DOI: https://doi.org/10.1116/1.581950]
  11. J. Nomoto, H. Makino, K. Inaba, S. Kobayashi, and T. Yamamoto, J. Appl. Phys., 124, 065304 (2018). [DOI:https://doi.org/10.1063/1.5038162]
  12. J. T. Gudmundsson, Plasma Sources Sci. Technol., 29, 113001 (2020). [DOI: https://doi.org/10.1088/1361-6595/abb7bd]
  13. J. H. Kim, T. Y. Seong, K. J. Ahn, K. B. Chung, H. J. Seok, H. J. Seo, and H. K. Kim, Appl. Surf. Sci., 440, 1211 (2018). [DOI:https://doi.org/10.1016/j.apsusc.2018.01.318]
  14. B. Window and N. Savvides, J. Vac. Sci. Technol., A, 4, 453 (1986). [DOI: https://doi.org/10.1116/1.573904]
  15. D. A. Golosov, Vacuum, 139, 109 (2017). [DOI: https://doi.org/10.1016/j.vacuum.2017.02.018]
  16. M. J. Zhao, Z. Z. Chen, C. Y. Shi, Q. Z. Chen, M. Xu, W. Y. Wu, D. S. Wuu, S. Y. Lien, and W. Z. Zhu, Vacuum, 207, 111640 (2023). [DOI: https://doi.org/10.1016/j.vacuum.2022.111640]
  17. A. Anders, J. Appl. Phys., 121, 171101 (2017). [DOI:https://doi.org/10.1063/1.4978350]
  18. W. Dai, Y. Liang, Q. Wang, and B. Li, Thin Solid Films, 764, 139613 (2023). [DOI: https://doi.org/10.1016/j.tsf.2022.139613]
  19. S. Kim and K. H. Kim, Coatings, 10, 321 (2020). [DOI:https://doi.org/10.3390/coatings10040321]
  20. H. Lei, M. Wang, Y. Hoshi, T. Uchida, S. Kobayashi, and Y. Sawada, Appl. Surf. Sci., 285, 389 (2013). [DOI: https://doi.org/10.1016/j.apsusc.2013.08.065]
  21. O. Kamiya, Y. Onai, H. O. Kato, and Y. Hoshi, J. Mater. Sci.: Mater. Electron., 18, 359 (2007). [DOI: https://doi.org/10.1007/s10854-007-9240-6]
  22. A. von Keudell, Plasma Sources Sci. Technol., 9, 455 (2000). [DOI: https://doi.org/10.1088/0963-0252/9/4/302]
  23. J. A. Thornton, J. Vac. Sci. Technol., 11, 666 (1974). [DOI:https://doi.org/10.1116/1.1312732]
  24. H. Stein, D. Naujoks, D. Grochla, C. Khare, R. Gutkowski, S. Grutzke, W. Schuhmann, and A. Ludwig, Phys. Status Solidi A, 212, 2798 (2015). [DOI: https://doi.org/10.1002/pssa.201532384]
  25. S. Najwa, A. Shuhaimi, N. Ameera, K. M. Hakim, M. Sobri, M. Mazwan, M. H. Mamat, Y. Yusnizam, V. Ganesh, and M. Rusop, Superlattices Microstruct., 72, 140 (2014). [DOI: https://doi.org/10.1016/j.spmi.2014.03.023]
  26. Y. Ren, P. Liu, R. Liu, Y. Wang, Y. Wei, L. Jin, and G. Zhao, J. Alloys Compd., 893, 162304 (2022). [DOI: https://doi.org/10.1016/j.jallcom.2021.162304]
  27. K. Danisman, S. Danisman, S. Savas, and I. Dalkiran, Surf. Coat. Technol., 204, 610 (2009). [DOI: https://doi.org/10.1016/j.surfcoat.2009.08.048]
  28. J. S. Hong, S. M. Kim, and K. H. Kim, Jpn. J. Appl. Phys., 50, 08KE02 (2011). [DOI: https://doi.org/10.1143/JJAP.50.08KE02]
  29. K. McLellan, Y. Yoon, S. N. Leung, and S. H. Ko, Adv. Mater. Technol., 5, 1900939 (2020). [DOI: https://doi.org/10.1002/admt.201900939]
  30. H. Hosono, Thin Solid Films, 515, 6000 (2007). [DOI:https://doi.org/10.1016/j.tsf.2006.12.125]
  31. V. A. Ha, D. Waroquiers, G. M. Rignanese, and G. Hautier, Appl. Phys. Lett., 108, 201902 (2016). [DOI: https://doi.org/10.1063/1.4950803]
  32. S. K. Maurya, H. R. Galvan, G. Gautam, and X. Xu, Energies, 15, 8698 (2022). [DOI: https://doi.org/10.3390/en15228698]
  33. A. Bhorde, A. Jadhavar, R. Waykar, S. Nair, H. Borate, S. Pandharkar, R. Aher, D. Naik, P. Vairale, G. Lonkar, and S. Jadkar, Thin Solid Films, 704, 137972 (2020). [DOI:https://doi.org/10.1016/j.tsf.2020.137972]
  34. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., 24, L781 (1985). [DOI: https://doi.org/10.1143/JJAP.24.L781]
  35. T. Minami, H. Sonohara, T. Kakumu, and S. Takata, Jpn. J. Appl. Phys., 34, L971 (1995). [DOI: https://doi.org/10.1143/JJAP.34.L971]
  36. G. Haacke, Appl. Phys. Lett., 28, 622 (1976). [DOI:https://doi.org/10.1063/1.88589]
  37. S. Park, D. A. Keszler, M. M. Valencia, R. L. Hoffman, J. P. Bender, and J. F. Wager, Appl. Phys. Lett., 80, 4393 (2002). [DOI: https://doi.org/10.1063/1.1485133]
  38. A. N. Banerjee and K. K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater., 50, 52 (2005). [DOI: https://doi.org/10.1016/j.pcrysgrow.2005.10.001]
  39. N. Duan, A. W. Sleight, M. K. Jayaraj, and J. Tate, Appl. Phys. Lett., 77, 1325 (2000). [DOI: https://doi.org/10.1063/1.1289906]
  40. R. Manoj, M. Nisha, K. A. Vanaja, and M, K, Jayaraj, Bull. Mater. Sci., 31, 49 (2008). [DOI: https://doi.org/10.1007/s12034-008-0009-1]
  41. S. K. Maurya, Y. Liu, X. Xu, R. Woods-Robinson, C. Das, J. W. Ager, and K. R. Balasubramaniam, J. Phys. D: Appl. Phys., 50, 505107 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa95b3]
  42. R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, J. Appl. Phys., 89, 8022 (2001). [DOI: https://doi.org/10.1063/1.1372636]
  43. S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, Adv. Mater., 15, 1409 (2003). [DOI: https://doi.org/10.1002/adma.200304947]
  44. D. Y. Kang, B. H. Kim, T. H. Lee, J. W. Shim, S. Kim, H. J. Sung, K. J. Chang, and T. G. Kim, Nano-Micro Lett., 13, 211 (2021). [DOI: https://doi.org/10.1007/s40820-021-00735-y].
  45. J. Zhang, J. Willis, Z. Yang, X. Lian, W. Chen, L. S. Wang, X. Xu, T. L. Lee, L. Chen, D. O. Scanlon, and K.H.L. Zhang, Cell Rep. Phys. Sci., 3, 100801 (2022). [DOI: https://doi.org/10.1016/j.xcrp.2022.100801]
  46. L. Cao, T. Wang, K. Ma, Z. Zhang, F. Luo, H. Zhou, D. Liu, M. Miao, B. Luo, and Y. Xu, J. Eur. Ceram. Soc., 42, 2836 (2022). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.01.056]