• 제목/요약/키워드: sputtering deposition

검색결과 1,501건 처리시간 0.026초

미러용 반사막을 위한 알루미늄 박막의 증착과 그 특성 (The Deposition of Aluminum Thin Films for Mirror Reflection Films and fits Properties)

  • 김춘곤;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.244-247
    • /
    • 1995
  • Physical, electrical and optical properties of Aluminum(Al) thin films were investigated in order to establish the optimum sputtering parameters in mirror reflection films. Al. thin films deposited on corning glass substrate by DC magnetron sputtering were grown as a variation of the input power, operation pressure and deposition time. The properties of the Al thin films have been discussed by deposition rate, SEM, XRD, sheet resistivity, resistivity and reflectance. Al thin films were obtained at the deposition conditions as follows: operating pressure, 3 mtorr; DC input power desnsitiy, 3W/$\textrm{cm}^2$.

  • PDF

표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성 (The Deposition and Properties of Surface Textured ZnO:Al Films)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

스퍼터링 증착변수에 따른 SKD 61강 기판상 TiN 박막의 증착거동 변화 (Effects of sputtering conditions on the growth behavior of TiN thin films on SKD 61 steel substrates)

  • 김상섭;임태홍;박용범
    • 한국진공학회지
    • /
    • 제7권4호
    • /
    • pp.314-319
    • /
    • 1998
  • 반응성 스퍼터링 방법을 사용해서 SKD 61강 기판상에 TiN박막을 제조하였으며, 다 양한 증착조건의 변수에 따른 박막의 증착거동 및 제조된 박막의 물성을 평가하였다. 챔버 내의 가스압력 및 RF인가전압이 높을수록 증착속도는 급격하게 증가하였다. 반면에 혼합가 스의 질소함량이 높을수록 증착속도는 감소하였으며, 박막의 표면에 hillock이 발생하였다. 대표적인 증착조건으로 제조된 TiN박막의 경우(111) 우선배향성을 보였으며, 비교적 순수한 TiN의 화학양론비를 충족하는 박막임을 알 수 있었다.

  • PDF

가열기판 및 비가열 기판에 증착한 ITO 박막의 결정화 거동 (Crystallization behavior of ITO thin films sputtered on substrates with and without heating)

  • 박주오;이준형;김정주;조상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2003
  • ITO thin films were deposited by RF-magnetron sputtering method and crystallization behavior of the films with and without external heating as a function of deposition time was examined. X-ray diffraction results indicated an amorphous state of the film when the deposition time is short about 10 min. When the deposition time was increased over 20 min development of crystallization of the films is observed. Because RF-sputtering transfers the high-energy to the growing film by energetic bombardment, it is believed that considerable activation energy for the crystallization of the film has transferred during deposition, which resulted in the crystallization of ITO thin films without external energy supply.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2000
  • Bi$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/. Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

rf 마그네트론 스퍼링에 의하여 증착된 TiN 박막의 물성에 대한 증착변수의 영향 (Effect of Deposition Parameters on the Properties of TiN Thin Films Deposited by rf Magnetron Sputtering)

  • 이도영;정지원
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.676-680
    • /
    • 2008
  • Radio-frequency (rf) 마그네트론 스퍼터링법을 이용하여 $SiO_2(2000{\AA})/Si$ 기판위에 TiN 박막이 증착되었다. $N_2/Ar$ 혼합가스에서 $N_2$ 가스의 농도, rf power, 공정압력 등을 변화시켜서 TiN 박막이 증착되었고 증착된 박막의 증착속도, 전기저항도 및 표면의 거칠기 등이 조사되었다. $N_2$ 가스의 농도가 증가함에 따라서 증착속도는 감소하였고 저항도는 증가하였으며 표면의 거칠기는 감소하였다. rf power가 증가함에 따라서 증착속도는 증가하였지만 저항도는 감소하였다. 증착압력의 증가에 따라서 증착속도는 큰 변화가 없었지만 저항도가 급격히 증가하였으며, 1 mTorr의 압력에서 $2.46{\times}10^{-4}{\Omega}cm$의 저항도를 갖는 TiN 박막이 얻어졌다. 박막의 증착속도와 저항도는 상관관계가 있는 것이 관찰되었고 특히 증착압력이 박막의 저항도에 가장 큰 영향을 미치는 것을 알 수 있었다.

Electrical Properties of ZnO:Al Transparent Conducting Thin Films for Film-Typed Dye Sensitized Solar Cell

  • Kwak, Dong-Joo
    • 조명전기설비학회논문지
    • /
    • 제22권11호
    • /
    • pp.36-43
    • /
    • 2008
  • In this parer aluminium-doped zinc oxide(ZnO:Al) conducting layer was deposited on polyethylene terephthalate(PET) substrate by r. f. magnetron sputtering method. The effects of gas pressure and r. f. sputtering power on the structural and electrical properties of ZnO:Al thin film were investigated experimentally. Especially the effect of position of PET substrate on the electrical properties of the film was studied and fixed to improve the electrical properties and also to increase the deposition rate. The results show that the structural and electrical properties of ZnO:Al thin film were strongly influenced by the gas pressure and sputtering power. The minimum resistivity of $1.1{\times}10^{-3}[{\Omega}-cm]$ was obtained at 5[mTorr] of gas pressure, and 18D[W] of sputtering power. The deposition rate of ZnO:Al film at 5[mTorr] of gas pressure was 248[nm/min]. and is higher by around 3 times compared to that at 25[mTorr].

염료감응형 태양전지의 상대전극 Pt 필름 두께와 증착 각도가 효율에 미치는 영향에 관한 연구 (Effects of the Sputtering Thickness and the Incident Angle of Pt Film Deposition as a Counter Electrode for Dye-sensitized Solar Cells)

  • 김희제;여태빈;박성준;김휘영;서현웅;손민규;채원용;이경준
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.588-593
    • /
    • 2010
  • Sputter deposition on a Pt counter electrode was studied using radio frequency (RF) plasma as the improvement of incident photon to current conversion efficiency (IPCE) for dye-sensitized solar cells (DSCs). Effects of the sputtering thickness and the incident angle on a Pt counter electrode for DSCs were investigated. Experiments to get the optimal sputtering time for the performance of the DSCs were carried out. And it is found that the optimized sputtering time was 120 seconds, in addition, the incident angles of the substrate was adjusted from $0^{\circ}$ to $60^{\circ}$. The maximum efficiency of 5.37% was obtained at the incident angle of $40^{\circ}$ with an active cell area of $1cm^2$.

Electrical Properties of a-IGZO Thin Films for Transparent TFTs

  • Bang, J.H.;Song, P.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2010
  • Recently, amorphous transparent oxide semiconductors (TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). The TOS TFTs using a-IGZO channel layers exhibit a high electron mobility, a smooth surface, a uniform deposition at a large area, a high optical transparency, a low-temperature fabrication. In spite of many advantages of the sputtering process such as better step coverage, good uniformity over large area, small shadow effect and good adhesion, there are not enough researches about characteristics of a-IGZO thin films. In this study, therefore, we focused on the electrical properties of a-IGZO thin films as a channel layer of TFTs. TFTs with the a-IGZO channel layers and Y2O3 gate insulators were fabricated. Source and drain layers were deposited using ITO target. TFTs were deposited on unheated non-alkali glass substrates ($5cm{\times}5cm$) with a sintered ceramic IGZO disc (3 inch $\varnothing$, 5mm t), Y2O3 disc (3 inch $\varnothing$, 5mm t) and ITO disc (3 inch $\varnothing$, 5mm t) as a target by magnetron sputtering method. The O2 gas was used as the reactive gas. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of a-IGZO thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF