Effect of Deposition Parameters on the Properties of TiN Thin Films Deposited by rf Magnetron Sputtering

rf 마그네트론 스퍼링에 의하여 증착된 TiN 박막의 물성에 대한 증착변수의 영향

  • Lee, Do Young (Department of Chemical Engineering, Inha University) ;
  • Chung, Chee Won (Department of Chemical Engineering, Inha University)
  • 이도영 (인하대학교 화학공학과) ;
  • 정지원 (인하대학교 화학공학과)
  • Received : 2008.04.10
  • Accepted : 2008.04.22
  • Published : 2008.08.31

Abstract

TiN thin films were deposited on a $SiO_2(2000{\AA})/Si$ substrate by radio-frequency(rf) magnetron sputtering. TiN films were prepared under varying $N_2$ concentration in $N_2/Ar$ gas mix, rf power and gas pressure, and investigated in terms of deposition rate, resistivity and surface morphology. As $N_2$ concentration increased, the deposition rate and the surface roughness of the films decreased and the resistivity increased. With increasing rf power, the deposition rate increased but the resistivity was decreased. As gas pressure increased, little change in deposition rate was obtained but the resistivity rapidly increased. TiN film with resistivity of $2.46{\times}10^{-4}{\Omega}cm$ at 1 mTorr was formed. It was observed that there existed a correlation between the deposition rate and resistivity. In particular, the gas pressure has a strong influence on the resistivity of thin films.

Radio-frequency (rf) 마그네트론 스퍼터링법을 이용하여 $SiO_2(2000{\AA})/Si$ 기판위에 TiN 박막이 증착되었다. $N_2/Ar$ 혼합가스에서 $N_2$ 가스의 농도, rf power, 공정압력 등을 변화시켜서 TiN 박막이 증착되었고 증착된 박막의 증착속도, 전기저항도 및 표면의 거칠기 등이 조사되었다. $N_2$ 가스의 농도가 증가함에 따라서 증착속도는 감소하였고 저항도는 증가하였으며 표면의 거칠기는 감소하였다. rf power가 증가함에 따라서 증착속도는 증가하였지만 저항도는 감소하였다. 증착압력의 증가에 따라서 증착속도는 큰 변화가 없었지만 저항도가 급격히 증가하였으며, 1 mTorr의 압력에서 $2.46{\times}10^{-4}{\Omega}cm$의 저항도를 갖는 TiN 박막이 얻어졌다. 박막의 증착속도와 저항도는 상관관계가 있는 것이 관찰되었고 특히 증착압력이 박막의 저항도에 가장 큰 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. Huang, C. T. and Duh, J. G., Surf. Coat. Technol., 81, 164-171(1996) https://doi.org/10.1016/0257-8972(95)02479-4
  2. Carson, R. T., Givens, J. H., Savage, H. S., Lee, Y. W., Rigsbee, J. M. and Croisant, W. J., Thin Solid Films, 204, 285-296(1991) https://doi.org/10.1016/0040-6090(91)90070-E
  3. Ernsberger, C., Nickerson, J., Miller, A. E. and Moulder, J., J. Vac. Sci. Technol., A3, 2415-2418(1985)
  4. Fracassi, F., D'Agostino, R., Lamendola, R. and Mangieri, I., J. Vac. Sci. Technol., A13, 335-342(1995)
  5. Abraham, S. C., Gabriel, C. T. and Zheng, J., J. Vac. Sci. Technol., A15, 702-706(1997)
  6. Chiu, H. K., Lin, T. L., Hu, Y., Leou, K. C., Lin, H. C., Twai, M. S. and Huang, T. Y., J. Vac. Sci. Technol., A19, 455-459(2001)
  7. Auger, M. A., Gago, R., Fernáandez, M., Sánchez, O. and Albella, J. M., Surface and Coatings Technology, 157, 26-33(2002) https://doi.org/10.1016/S0257-8972(02)00143-3
  8. Hirose, H., Suzuki, S., Gotoh, M. and Sasaki, T., Materials Science Forum, 490-491, 601-606(2005)
  9. Kim, H. and Rossnagel, S. M., J. Vac. Sci. Technol., A20, 802-808(2002)
  10. Yi, L., Zhang, W., Wu, J. and Mao, D., Semicond. Sci. Technol., 21, 250-253(2006) https://doi.org/10.1088/0268-1242/21/3/006
  11. Lee, D.-K., Lee, J.J. and Joo, J. H., Surface and Coatings Technology, 174-175, 1234-1237(2003) https://doi.org/10.1016/S0257-8972(03)00472-9
  12. Li, Y. L., Lee, D. Y., Min, S. R., Cho, H. N. Kim, J.-S. and Chung, C. W., Jpn. J. App. Phys., 47, 6896-6899(2008) https://doi.org/10.1143/JJAP.47.6896