• Title/Summary/Keyword: sputtering deposition

Search Result 1,501, Processing Time 0.036 seconds

Diagnostics of Magnetron Sputtering Plasmas: Distributions of Density and Velocity of Sputtered Metal Atoms

  • Sasaki, Koichi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.98-99
    • /
    • 2012
  • Deposition of thin films using magnetron sputtering plasmas is a well-developed, classical technology. However, detailed investigations using advanced diagnostics are insufficient in magnetron sputtering, in comparison with plasma-aided dry etching and plasma-enhanced chemical vapor deposition. In this talk, we will show examples of diagnostic works on magnetron sputtering employing metal targets. Diagnostic methods which have fine spatial resolutions are suitable for magnetron sputtering plasmas since they have significant spatial distributions. We are using two-dimensional laser-induced fluorescence spectroscopy, in which the plasma space is illuminated by a tunable laser beam with a planer shape. A charge-coupled device camera with a gated image intensifier is used for taking the picture of the image of laser-induced fluorescence formed on the planer laser beam. The picture of laser-induced fluorescence directly represents the two-dimensional distribution of the atom density probed by the tunable laser beam, when an intense laser with a relatively wide line-width is used. When a weak laser beam with a relatively narrow linewidth is used, the laser-induced fluorescence represents the density distribution of atoms which feel the laser wavelength to be resonant via the Doppler shift corresponding to their velocities. In this case, we can obtain the velocity distribution function of atoms by scanning the wavelength of the laser beam around the line center.

  • PDF

Process Diagnosis of Reactive Deposition of MgO by ICP Sputtering System (유도결합 플라즈마 스퍼터링 장치에서 MgO의 반응성 증착 시 공정 진단)

  • Joo, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.5
    • /
    • pp.206-211
    • /
    • 2012
  • Process analysis was carried out during deposition of MgO by inductively coupled plasma assisted reactive magnetron sputtering in Ar and $O_2$ ambient. At the initiation of Mg sputtering with bipolar pulsed dc power in Ar ambient, total pressure showed sharp increase and then slow fall. To analyse partial pressure change, QMS was used in downstream region, where the total pressure was maintained as low as $10^{-5}$ Torr during plasma processing, good for ion source and quadrupole operation. At base pressure, the major impurity was $H_2O$ and the second major impurity was $CO/N_2$ about 10%. During sputtering of Mg in Ar, $H_2$ soared up to 10.7% of Ar and remained as the major impurity during all the later process time. When $O_2$ was mixed with Ar, the partial pressure of Ar decreased in proportion to $O_2$ flow rate and that of $H_2$ dropped down to 2%. It was understood as Mg target surface was oxidized to stop $H_2$ emission by Ar ion sputtering. With ICP turned on, the major impurity $H_2$ was converted into $H_2O$ consuming $O_2$ and C was also oxidized to evolve CO and $CO_2$.

The Effect of Sputtering Process Variables on the Properties of Pd Alloy Hydrogen Separation Membranes (스퍼터 공정변수가 팔라듐 합금 수소분리막의 특성에 미치는 영향)

  • Han, Jae-Yun;Joo, Sae-Rom;Lee, Jun-Hyong;Park, Dong-Gun;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.6
    • /
    • pp.248-257
    • /
    • 2013
  • It is generally recognized that thin Pd-Cu alloy films fabricated by sputtering show a wide range of microstructures and properties, both of which are highly dependent on the sputtering conditions. In view of this, the present study aims to investigate the relationship between the performance of hydrogen separation membranes and the microstructure of Pd alloy films depending on sputtering deposition conditions such as substrate temperature, working pressure, and DC power. We fabricated thin and dense Pd-Cu alloy membranes by the micro-polishing of porous Ni support, an advanced Pd-Cu sputtered multi-deposition under the conditions of high substrate temperature / low working pressure / high DC power, and a followed by Cu-reflow heat-treatment. The result of a hydrogen permeation test indicated that the selectivity for $H_2/N_2$ was infinite because of the void-free and dense surface of the Pd alloy membranes, and the hydrogen permeability was 10.5 $ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ for a 6 ${\mu}m$ membrane thickness.

Design of equipment for multi-layer sputtering deposition (다층막 스퍼터링 증착장치의 설계)

  • Kim, Soo-Yong;Jung, Won-Chae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.548-550
    • /
    • 2002
  • 본 장치는 다층막 스퍼터링 증착장치로써 박막을 증착시키는데 용이하게 설계하는 것이 목적이며, 박막두께가 균일하게 증착되고 진공조 내부의 압력을 일정하게 제어가 가능하고 배기시스템은 스퍼터실과 증착실의 진공배기를 공용으로 구조를 설계하여 장치의 스퍼터링 증착조건에 적합하도록 연구실험용으로 설계되어졌다.

  • PDF

Growth Model of Bi-Superconducting Thin Film Fabricated by Co-sputtering Method (동시 스퍼터법으로 제작한 Bi 초전도 박막의 성장 모델)

  • Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.796-799
    • /
    • 2002
  • BSCCO thin films are fabricated via a co-deposition process at an ultra-low growth rate using ion beam sputtering. The sticking coefficient of Bi element exhibits a characteristic temperature dependence. This temperature dependence of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi$_2$O$_3$.

  • PDF

Epitaxial Growth of BSCCO Thin Films Fabricated by Son Beam Sputtering

  • Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.484-488
    • /
    • 1997
  • BSCCO thin film is fabricated cia both processes of co-deposition and layer-by-layer deposition at an ultralow growth rate using ion beam sputtering method. The adsorption of Bi atom and the appearance of Bi-2212 phase shows large differance between both processes. It is found that the resident time of Bi vapor species on the surface of the substrate strongly dominates the film composition and the formation of the structure.

  • PDF

The effect of deposition conditions on the adhesion strength of TiN multilayer by D. C. magnetron sputtering (D. C. 마그네트론 스퍼터링에 의한 증착조건이 TiN다층박막의 밀착력에 미치는 영향)

  • 김선규;유정광;이건환;권식철
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.261-267
    • /
    • 1996
  • The characteristics and adhesion strength of TiN layer deposited by D. C. magnetron sputtering were investigated. Three types of TiN layers were deposited on STS304 stainless steel. Scratch tests were performed to determine the effect of deposition temperature, the thickness of coated TiN layer and the titanium inter-layer on the adhesion strength. TiN multilayer with titanium inter-layer showed the highest critical load in the deposition temperature range of $25^{\circ}C$ to $300^{\circ}C$. Adhesion strength of TiN multilayer with titanium inter-layer was raised from 15N to 20N by raising deposition temperature from $25^{\circ}C$ to $400^{\circ}C$. Adhesion strength was raised from 18N to 38N by increasing the thickness of outer layer of TiN multilayer from 2.1 $\mu\textrm{m}$ to 9.5 $\mu\textrm{m}$.

  • PDF

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.97-100
    • /
    • 2000
  • Si$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Fabrication of Bi-superconducting Thin Films by Layer-by-layer Sputtering Method (순차 스퍼터법에 의한 Bi-초전도 박막의 제작)

  • 심상흥;양승호;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.613-616
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$_{x}$ thin films have been fabricated by atomic layer-by-layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 and 90 wt%-ozone/oxygen mixture gas of typical pressure of 1~9$\times$10$^{-5}$ Torr are supplied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then Bi-2201 oriented along the c-axis is grown.n.

  • PDF