• Title/Summary/Keyword: sputter-deposition

Search Result 340, Processing Time 0.03 seconds

Development of certified reference material (CRM)s for surface analysis II : multilayer thin films for sputter depth profiling (표면분석용 인증표준물질의 개발 II : 깊이분포도용 다층 박막 표준물질의 개발)

  • 김경중;문대원
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.283-289
    • /
    • 1999
  • Multilayer thin film reference materials for the sputter depth profiling analysis are used to calibrate the sputter depth scale by measuring the sputtering rate and to optimize the sputtering conditions for the best depth resolution. Surface analysis group of Korea Research Institute of Standards and science (KRISS) have developed various types of multilayer thin films by using an ion beam sputter deposition and in-situ surface analysis system. The chemical states of the thin films reference materials were certified by in-situ XPS and the thicknesses were certified by transmission electron microscopy (TEM).

  • PDF

Formation of Microporosities in Sputter-Deposited AgInSbTe Thin Films and Their Behavior (스퍼터 증착시킨 AgInSbTe 박막에서 미세기공의 형성과 그 거동)

  • Kim, Myong-R.;Seo, H.;Park, J. W.;Choi, W. S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.84-89
    • /
    • 1996
  • The nucleation and growth of microporosities was observed during the course of annealing treatment of sputter-deposited AgInSbTe thin films. There was a close correlation between the density of microporosity and the sputtering gas pressure in annealed thin films. The void density for a given composition decreased with sputtering gas pressure. It was shown from the present study that the number of porosities decreased while the average porosity size increased as the annealing temperature and holding time increased. The mechanism of porosity formation in the sputter-deposited AgInSbTe thin flus containing Ar-impurity trapped from the Ar-plasma is discussed in the present article.

  • PDF

The crystalline characteristics of ZnO deposited on various cooling rates by RF sputter (RF 스퍼터링 법에 의한 ZnO 박막의 결정성과 기판의 냉각속도)

  • Park, Sung-Hyun;Lee, Neung-Hun;Ji, Seung-Han;Jeon, Seok-Hwan;Lee, Sang-Hoon;Chu, Soon-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.257-258
    • /
    • 2006
  • ZnO thin films were prepared by RF magnetron sputter deposition on p-Si(100) wafer with various cooling rates of substrate temperature such as the substrates were pre-heated to $400^{\circ}C$ before the deposition and then cooled down naturally or slowly to $300^{\circ}C$, $200^{\circ}C$, $100^{\circ}C$, and R.T., by the temperature controller during the deposition. The crystall me and micro-structural characteristics of the films were investigated by XRD and SEM ZnO films which cooled down naturally or slowly by temperature controller during deposition, especially the film were deposited with cooling down from $400^{\circ}C$ to $200^{\circ}C$ slowly, showed the most outstanding c-axis preferred orientation.

  • PDF

Carrier Design by Temperature Distribution Analysis in Chamber of ITO Deposition Inline Sputter (ITO 증착용 인라인 챔버 온도 분포해석에 의한 캐리어장치의 설계)

  • Lee, Sang-Jae;Choi, Ju-Ran;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-97
    • /
    • 2015
  • The design of the glass-carrier was studied using simulations of the temperature distribution of an ITO deposition inline-sputter process. The temperature distribution was simulated in Heating Chamber 7, and in the ITO Deposition Chambers 8 and 9. The temperature distribution of the glass sheets was low in both the lower and upper lines. Moreover, it was observed that the temperature in Chamber 8 significantly affected the temperature in Chamber 9, and that the latter was hotter. The rear of the chambers were subjected to more heating than the fronts, so the temperature range at the back was wider. Redesigning the shape of the carrier made it possible to load more glass sheets on the glass carrier, and to make deposits on the ITO glass at higher temperature, over a wider area.

Nucleation and Growth Rate of CVD-W on TiN (TiN상에서의 CVD-W의 핵생상 및 성장속도)

  • Kim, Eui-Song;Lee, Chong-Mu;Lee, Jong-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.28-30
    • /
    • 1992
  • Long incubation period of W nucleation on the TiN glue layer is a serious problem in blanket W process. In this study we investigated the dependence of W nucleation and growth rate on the preparation method of the TiN film, deposition temperature, chemistry, $SiH_4/WF_6$ ratio and sputter etching, ion implantation, and $SiH_4$ flushing pre-treatments. Incubation periods of W nucleation and deposition rates of W growth on three different TiNs are in the order of TiN>RTP-TiN> annealed TiN and TiN${\leq}$RTP-TiN${\leq}$ annealed TiN, respectively. $\beta$-W is not found on TiN substrate even for high $SiH_4/WF_6$ ratio. Sputter etching pre-treatment increases incubation period of W nucleation, while it decreases deposition rate. $SiH_4$ flushing pre-treatment decreases incubation period, but it slightly decreases deposition rate.

  • PDF

Thermal Stability of Self-formed Barrier Stability Using Cu-V Thin Films

  • Han, Dong-Seok;Mun, Dae-Yong;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.188-188
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Meta Oxide Semiconductor) based electronic devices, the electronic devices, become much faster and smaller size that are promising property of semiconductor market. However, very narrow interconnect line width has some disadvantages. Deposition of conformal and thin barrier is not easy. And metallization process needs deposition of diffusion barrier and glue layer for EP/ELP deposition. Thus, there is not enough space for copper filling process. In order to get over these negative effects, simple process of copper metallization is important. In this study, Cu-V alloy layer was deposited using of DC/RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane SiO2/Si bi-layer substrate with smooth surface. Cu-V film's thickness was about 50 nm. Cu-V alloy film deposited at $150^{\circ}C$. XRD, AFM, Hall measurement system, and AES were used to analyze this work. For the barrier formation, annealing temperature was 300, 400, $500^{\circ}C$ (1 hour). Barrier thermal stability was tested by I-V(leakage current) and XRD analysis after 300, 500, $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However vanadium-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Therefore thermal stability of vanadium-based diffusion barrier is desirable for copper interconnection.

  • PDF

The Blanket Deposition and the Sputter Seeding Effects on Substrates of the Chemically Vapor Deposited Cu Films (Sputter Seeding을 이용한 CVD Cu 박막의 비선택적 증착 및 기판의 영향)

  • Park, Jong-Man;Kim, Seok;Choi, Doo-Jin;Ko, Dae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.827-835
    • /
    • 1998
  • Blanket Copper films were chemically vapor deposited on six kinds for substrates for scrutinizing the change of characteristics induced by the difference of substrates and seeding layers. Both TiN/Si and {{{{ { SiO}_{2 } }}/Si wafers were used as-recevied and with the Cu-seeding layers of 40${\AA}$ and 160${\AA}$ which were produced by sputtering The CVD processes were exectued at the deposition temperatures between 130$^{\circ}C$ and 260$^{\circ}C$ us-ing (hfc)Cu(VTMS) as a precursor. The deposition rate of 40$^{\circ}C$ Cu-seeded substrates was higher than that of other substrates and especially in seeded {{{{ { SiO}_{2 } }}/Si substrate because of the incubation period reducing in-duced by seeding layer at the same deposition time and temperature. The resistivity of 160${\AA}$ Cu seeded substrate was lower then that of 40 ${\AA}$ because the nucleation and growth behavior in Cu-island is different from the behavior in {{{{ { SiO}_{2 } }} substrate due to the dielectricity of {{{{ { SiO}_{2 } }}.

  • PDF

Plasma Characterization of Facing Target Sputter System for Carbon Nitride Film Deposition

  • Lee, Ji-Gong;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.98-103
    • /
    • 2004
  • The plasma properties in the facing target sputtering system during carbon nitride film deposition have been investigated. The ionized nitrogen species of the deposited films increased with increasing discharge current and were independent of the nitrogen pressure. The nitrogen content in the films did not vary significantly with the variation of nitrogen gas. The electron temperature was high close to that in the inter-cathode region, reduced as the electrons moved away from the most intense region of magnetic confinement and increased again outside this region. Calculations based on the film composition showed that the ion to carbon atom ratio at the substrate was about 50 and that the ratio between the ionized and neutral nitrogen molecules was about 0.25.

SPUTTER-DEPOSITION OF CARBON NITRIDE FILMS WITH HIGH NITROGEN CONCENTRATION

  • Taki, Yusuke;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.498-504
    • /
    • 1996
  • The synthesis of carbon nitride thin films with high nitrgen concentration was accomplished by reactive supttering at relatively high working pressure. In conventional reactive sputter-deposition of carbon nitride films, working pressure was 0.3-5Pa and the ratio of nitrogen to carbon(N/C ratio) in the films was less than 0.5. In this study, amorphous carbon nitride films with the N/C ratio $\tickapprox$ 1.0 were prepared on Si(100). substrates at higher pressure, 20-60 Pa. Structural analyses with Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the films prepared consisted of triazine-like plain network.

  • PDF