• Title/Summary/Keyword: sprout rot

Search Result 36, Processing Time 0.024 seconds

Occurrence of Bacterial Soft Rot of Soybean Sprout Caused by Erwinia carotovora subsp. carotovora (Erwinia carotovora subsp. carotovora에 의한 콩나물 무름병 발생)

  • 박종철;송완엽;김형무
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • A causal agent of bacterial soft rot occurring in soybean sprout cultivation in Korea was isolated and identified, and its incidence in several sprout-soybean cultivars was examined. Infected soybean seeds became light brown and whitish, and could not germinate until 3 days after seeding, accompanying rotting of soybean seeds and sprouts. The causal organism isolated from the rotten seeds and sprouts was identified as Erwinia carotovora subsp. carotovora on the basis of its pathogenicity, morphological and physiological characteristics and the results of the Biolog GN microplate test program. The bacterial soft rot by E. c. subsp. carotovora was firstly described in soybean sprout in Korea, and we name it“the bacterial soft rot of soybean sprout”. The disease occurred more frequently in Nam-hae and Fu-reun sprout-soybean cultivars than in Eun-ha, So-baek, and Ik-san cultivars.

  • PDF

Population Density Changes of Bacteria Causing Soybean Sprout Rot on Soybean Pods (콩 꼬투리에서 서식하는 세균 및 콩나물 부패균의 밀도 변화)

  • 이은정;한광섭;심명용;최재을
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.41-45
    • /
    • 1999
  • Bacterial population densities on soybean pods from Chungnam province ranges 105~106 CFU/$\textrm{cm}^2$, whereas those of bacteria causing sprout rot ranged 0~103 CFU/$\textrm{cm}^2$. Erwinia chrysanthemi, Xanthomonas campestris pv. glycines, Staphylococcus sp., and Micrococcus sp. were identified as pathogenic bacteria causing soybean sprout rot. The population density of X. campestris pv. glycines was higher than those of other bacteria.

  • PDF

Effects of Chitosan on Production and Rot Control of Soybean Sprouts

  • Lee, Young-Sang;Kang, Chang-Sung;Lee, Yong-Sun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.368-372
    • /
    • 1999
  • The practicality of utilizing chitosan as a natural antimicrobial compound to reduce soybean sprout rot was tested. Domestic and imported soybean seeds were soaked for 6 hours in solutions containing different levels of chitosan and acetic acid (glacial), and cultured at $25^{\circ}C$ for 6 days. In case of domestic seeds, soaking with 1,000ppm chitosan increased germination percentage, hypocotyl thickness, total length, and fresh weight of sprouts by 4%, 5%, 2%, and 1%, respectively. The total sprout yield was increased by chitosan in a concentration-dependent manner in that 1,000ppm chitosan resulted in 8% increment of total yield (7.47kg sprouts/kg seed). Chitosan significantly reduced sprout rot percentage to 7.0% compared to control (13.8%), and consequently enhanced marketable sprout yield by 39%. Compared to domestic seeds, the imported soybean seeds exhibited very low germination percentage regardless of chitosan treatments. Chitosan, nevertheless, consistently induced yield increment and rot decrement in imported soybean sprouts. Although 100ppm acetic acid was effective in reducing sprout rot percentage down to 11.8%, its yield-increasing effects were not as prominent as chitosan. In conclusion, soaking soybean seeds with chitosan seems to be a practical method to enhance the efficiency of soybean sprout production.

  • PDF

Utilization of ventilation Pipe to Decrease Commondity Temperature and Rot of Soybean Sprouts (환기봉을 이용한 재배용기 내부 콩나물 품온 저하 및 부패 경감)

  • 이영상
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • The practicality of utilizing ventilation pipe to enhance soybean sprout productivity by lowering commodity temperature and resultant sprout rot was tested. The ventilation pipes with holes for aeration were vertically installed inside of a sprout cultivation container prior to adding soaked soybean seeds. The time-series changes in sprout commodity temperature and resultant growth, yield, marketable sprout percentage, and rot of soybean sprouts were measured. The ventilation pipes effectively decreased sprout commodity decreased sprout commodity temperature by 4.7$^{\circ}C$. Ventilation pipes also enhanced sprout yield and marketable sprout percentage by 3.9% and 4.0%, respectively, while reducing sprout rot by 4.1%. In conclusion, ventilation pipe seems a practical and effective non-chemical method to enhance the productivity of soybean sprouts.

  • PDF

Control of Soybean Sprout Rot Caused by Pythium deliense in Recirculated Production System

  • Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.280-283
    • /
    • 2003
  • A soybean-sprout rot epidemic occurred in a mass production soybean sprout factory in 2000 and 2001 in Korea, which caused up to 20% production loss. Among the causal pathogenic bacteria and fungi, Pythium deliense was found to be the dominant pathogen of severe root and hypocotyls rot, particularly in recirculating water system. An average of 90% of the isolated fungi from the rotted sprout on potato dextrose agar were Pythium sp. The fungal density of Pythium in the sampled water was monitored in the recycled water system for 1 year using a selective medium (com meal agar with Pimaricin, 10 mg; Rifampicin, 10 mg; and Ampicillin, 100 mg per 1 liter). The drained water from the soybean-sprout cultivation always had a certain amount of fungus in it. The removal of Pythium from the recycling water system must be thorough, safe, and environment friendly. However, the pathogen in the water was easily found even after ozone and chlorine treatments, which were devised on the recycling system for the removal of microorganisms. 5-$\mu\textrm{m}$ pore size filter was applied and was able to successfully control the disease. As the sprout industry increasingly shifts into mass production, the demand for water will increase continuously. Recycling water for sprout production is eco-friendly. However, a process must be devised to be able to first decompose organic matters before Pythium zoospores are filtered.

Effects of Environmental Conditions on Incidence of Bacterial Soft Rot in Soybean Sprout (환경요인이 콩나물 무름병 발생에 미치는 영향)

  • 박종철;김경호;송완엽;김형무
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.317-323
    • /
    • 1997
  • Incidence of soybean sprout rot by Erwinia carotovora subsp. carotovora was examined under several artificial conditions. Under higher temperatures over 3$0^{\circ}C$, disease incidence was increased and the rate of soft rot incidence was 22% at 35$^{\circ}C$. Artificial injuries of inner cotyledon and seed coat induced the disease above 70% and inhibited the soybean sprout growth. Relative humidity above 90% increased the soft rot to 33% and inhibited soybean sprout growth. When the leaked water collected from soybean sprout was reused for irrigation, the disease incidence was increased.

  • PDF

Pathogenic bacteria causing rot in commercial soybean sprout cultivation

  • Yun, Sung-Chul;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Soybean sprout pathogenic bacteria were isolated from the large, deep containers of a commercial factory. Over a period of one year, 40 pathogenic-like bacteria were isolated among a total of 732 isolates. In addition to bacteria previously reported to be associated with rotting, such as Pseudomonas putida and Erwinia carotovora, several other genera were also identified: Acinetobacter spp., Chryseobacterium spp., Klebsiella sp., Pantoea agglomerans, Bacillus sp. Fatty acid methyl ester (FAME) analysis using the Microbial ID (MIDI) system, and 16s rRNA sequence analysis, yielded identical results, confirming the identities of these microorganisms. Several types of selective media were not good for identification and determination of population structure in commercial environments, as colony type was not specific to the genus. There was no dominant bacterium, and we were not able to find the main bacterium responsible for soybean spout rot. Even though we did not identify a major target for controlling rot or screening for resistant cultivars, the results of this study indicated that bacterial rot of soybean sprout is endemic. In addition, it emerged that factory epidemics in summer are not caused by the bacteria isolated in this study.

Effective Heat Treatment Techniques for Control of Mung Bean Sprout Rot, Incorporable into Commercial Mass Production

  • Lee, Jung-Han;Han, Ki-Soo;Kim, Tae-Hyoung;Bae, Dong-Won;Kim, Dong-Kil;Kang, Jin-Ho;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.174-179
    • /
    • 2007
  • Seedlot disinfection techniques to control mung bean sprout rot caused by Colletoricum acutatum and C. gloeosporioides were evaluated for commercial production scheme. Soaking seedlots in propolis (100 X) and ethanol (20% for 30 min) appeared promising with control values of 85.5 and 80.8 respectively, but still resulted in up to 20% rot incidence. None of the C. acutatum conidia survived through hot water immersion treatment (HWT) for 10 min at temperatures of 55, 60 and $65^{\circ}C$, whereas the effective range of the dry heat treatment (DHT) was $60-65^{\circ}C$. Tolerance of mung bean seedlot, as estimated by hypocotyl elongation and root growth, was lower for HWT than for DHT. Germination and growth of sprouts were excellent over the range of $55-65^{\circ}C\;at\;5^{\circ}C$ intervals, except for HWT at $65^{\circ}C$ for 5 min. At this marginal condition, heat damage appeared so that approximately 2% of seeds failed to sprout to normal germling and retarded sprouts were less than 5% with coarse wrinkled hypocotyls. These results suggested that DHT would be more feasible to disinfect mung bean seedlots for commercial sprout production. Heat treatment at above ranges was highly effective in eliminating the epiphytic bacterial strains associated with marketed sprout rot samples. HWT of seedlot at 55 and $60^{\circ}C$ for 5 min resulted in successful control of mung bean sprout rot incidence with marketable sprout quality. DHT at 60 and $65^{\circ}C$ for 30 min also gave good results through the small-scale sprouting system. Therefore, we optimized DHT scheme at 60 and $65^{\circ}C$ for 30 min, considering the practical value of seedlot disinfection with high precision and accuracy. This was further proved to be a feasible and reliable method against anthracnose incidence and those bacterial strains associated with marketed sprout rot samples as well, through factory scale mung bean sprout production system.

Investigation of soybean sprout rot and the elimination of improper seeds for quality control on soybean seedlots

  • Lee, Jung Han;Kwak, Youn-Sig
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Soybean sprouts have been a considered a nutrient-rich vegetable for hundreds of years. To evaluate the seedlot quality of soybean sprouts grown, and to evaluate a method for reducing the presence of improper seeds in soybean seedlots, microbes associated with soybean sprout rot were isolated from samples collected. Morphological characteristics and gas chromatography profiles of the cultured fungal and bacterial strains were identified. Eight types of improper seeds were identified: purple stain(Ps), black rot(Br), seed coat black spot(Cb), wrinkled seed(Ws), brown hilum(Bh), seed coat fracture(Cf), unripe seed(Us), and brown seed coat(Bc). The improper seeds were also dipped into 15%, 20%, and 25% NaCl solutions, as well as a saturated solution of NaCl, for 1min. As the NaCl concentration increased, the number of floating improper seeds increased as well. The highest floating rates were observed for the Cf seeds.